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Abstract—This paper studies a stochastic age-dependent
competitive population system with diffusion. The definition of
exponential mean square stability of numerical method is
introduced. It is proved that the Euler scheme is exponentially
stable in mean square sense under the given conditions. An
example is given for illustration.

Keywords - Stochastic competitive
Diffusion; Euler method; Exponential stability

MR(2000): 65B15;60H35;91B70;60H10

population  system;

1. INTRODUCTION

Stochastic differential equations have many important
applications in such areas as economics, biology, finance,
ecology and other sciences[1-3]. In the present investigation,
the random behavior of the death and influence of external
environment process are carefully incorporated into the age-
dependent population equations to obtain a system of stochastic
differential equations that model age-dependent population

dynamics. This age-dependent population model is of
theoretical interest.
The effects of the stochastic environmental noise

considerations lead to stochastic age-structured population
systems, which are more realistic. The study of stochastic age-
structured single species system was initiated by Zhang [4].
Since then, existence, uniqueness, stability and convergence of
solutions to such stochastic population system have received
many attentions from several authors. For example, Li [5,6]
investigated convergence of numerical solutions to stochastic
age-dependent population system with Poisson jumps,
diffusions and Markovian. When considering the diffusion of
the population, Zhang [7] developed numerical scheme and
showed the convergence of the numerical approximation
solution for a stochastic age-dependent population system. In
addition, Zhang [8,9] studied the existence, uniqueness and
exponential stability of numerical solutions for a stochastic
age-structured population system with diffusion. Wang [10]
investigated convergence of the semi-implicit Euler method for
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stochastic age-dependent population equations with Poisson
jumps.

For the problem of multi-species, Liu [11] studied discrete
competitive and cooperative models of Lotka-Volterra type.
Luo [12] investigated optimal birth control for predator-prey
system of three species with age-structured. However, their
investigations did not take stochastic factors into account. To
the best of our knowledge, there haven’t been any results on
the topic of stochastic competitive population system of two
species with diffusion.

In this paper, we shall discuss the exponential stability of
stochastic partial differential equations. That is, we consider
the exponential stability of stochastic age-structured
competitive population systems with diffusion

R, R _
ot or

=—A(rLx)Y,P+f(rtxR)

k(R OAR + 24 (rt xR

g (rtx, Pl)%, inQ, = (0, A)xQ, (L)
oP, 0P,
6—tz+a—rz— K, (r,t)AP, + 1, (r,t,X)P,
=4 (rt,x)y,P+f,(rtx.PR,)
oW .
+9,(r,t,x, Pz)ﬁ, inQ, =(0,A)xQ, €.2)
RO.LX)=[ A(LLXP(rLX)dr,  inQ.T)xT, 3
P.(r,0,x) =P,(r,x), in Q, =(0,A)xT, 1.4

R(r.t,x)=0,

y,(t.x) = [ R(r.tdr, inQ, (L6)

on =, =(0,A)x(0,T)xl,  (15)

Where (i=12), te(0,T) , re(0,A) , xel' ,
P(r,t,X) are the density with respect to age a of ith
population at time t and in the location X, £ (r,t,x) and
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4:(r,t,X) denote the fertility rate and mortality rate of
females of age r at time t and in spatial position
X ,respectively. A denotes the Laplace operator with respect
to the space variable, ki (constant) >0 are the diffusion

coefficient. ﬂ,l(r,t,x) represent the interspecific acting
functions and they are all bounded.
f.(r,t,x,R)+g;(r,t, X,Pi)% denote effects of external
environment for population system, such as emigration and
earthquake and so on.

In general, stochastic age-structures mathematical models
with diffusion rarely has an explicit solution. Thus, numerical
approximation schemes are invaluable tools for exploring its
properties. In this paper, we will develop a numerical
approximation method for stochastic age-structures population
system with diffusion of the type described by Egs.

(2.1) — (1.6) . The numerical solution is defined by an implicit

equation containing partial derivative. In particular, our results
extend those of Zhang [13].

The structure of the paper is as follows: In section 2, we
begin with some preliminary results, which are essential for our
analysis, and introduce Euler approximation. In section 3, we
give the main result that the Euler method is exponential stable
in mean square sense under some conditions, and the proof of
this main result is completed. In section 4, we provide an
example to illustrate our result.

2. PRELIMINARIES AND EULER APPROXIMATION
Let O=(0,A)xTI", and

vV ={plpc120), 2 c12(0),

o
0¢ . : I
where ™~ are generalized partial derivatives}.
X.

V is a Sobolev space. H = L*([0, A]) such that

VoH=H->'V
V' is the dual space of V. We denote by |-| and || - || the
norms in V and V' respectively; by <--> the duality
product between V , V', and by (:,-) the scalar product in
H, and m is a constant such that | X|<m|| x|, VX eV .
For an operator Be L (M, H) be the space of all bounded

linear operators from M into H , we denote by || B||, the
Hilbert-Schmidt norm, i.e.

| Bl;=tr(BWB").
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Let (Q,F, P) be a complete probability space with a
filtrations {F, },., satisfying the usual conditions (i.e., it is
increasing and right continuous while F, contains all P -null
sets).

Let C=C([0,T];H) be the space of all continuous
[0,T] into H with sup-norm
LY =L°([0,TLV) and

function  from

[ llc=SUPgeser [W(S)]
L =L"([0,TEH).

Definition 1 Let (QQ,F,{F ,},P) be the stochastic
basis and @, a Wiener process. Suppose that P, (i =12)
are random variables such that E | P, [P<oo. A stochastic
process P, (i =1,2) are said to be the solution on €2 to the
stochastic age-structured population system for t €[0,T] if
the following conditions are satisfied:

(1) P, are F | -measurable random variable (i =1,2);

@ P el?OT:V)[ 12(©QCO.T:V)). (i=12)

p>1,T>0, where 1°(0,T;V) denotes the space of
all V-valued processes (P,),or; (we will write B, for short)
measurable (from [0, T]xQ into V ), and satisfying

E[ lIp P dt<oo  (i=12).

Here C(0,T;V) denotes the space of all continuous functions
from [0,T] to V ;
(3) They satisfy the equation:

<O—a,v>+jt<@,v>ds—r<ki(r,t)APl,v>ds+r<;¢1(r,s,x)Pl,v>ds
ot o o 0 0 (2 1)
=(Plo,v)—I;<ﬁl(r,t,x)y2F§,v>ds+J';< fi(r,s,x,R),v>ds
+[ <g,(r.s X R)V > dw(s)
oP, t 0P, t
<E,v>+J‘O<E,v>ds—J.O<kz(r,t)APz,v>ds

+I;< (1,8, X)P,,v > ds

. (2.2)
= (PooV) = [, < A (L X)Y;P, v > ds
+J'0I< f,(r,s,x,R,),v>ds

+j; <0,(r.5,x,P,).v > dw(s)
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for all veV , te[0,T], ae. weQ , where the
stochastic integrals are understood in the 1t0's sense.

We consider the exponential stability of the following
stochastic age-structured competitive population systems with
diffusion

P, R

o a ki (AR, + 4 (r,t, X)R
:7/11(r=t7x) Y.R+ f1(ratsX7P1)
oW .
+0,(r,t,x, Pl)R, in Q,=(0,A)xQ, (2.3
oP, OP,
Eﬁa—:— k, (r,t)AP, + 14, (r,t, X)P,
=—22(r,t,x) ViRt fz(r,t,x, Pz)
oW .
+0,(r,t,x, PZ)X’ inQ, =(0,A)xQ, (2.4)
RO.LX) =" A(rLYP(rL X, in (0,T)xT", (25)
P(r,0,x) =P, (r,x), inQ, =(0,A)xT, (2.6)
P(r,t,x) =0, onX, =(0,A)x(0,T)xar, (2.7)
Y69 = [ R(r.txdr, inQ, 29)

A is the maximal age of the population species, so
P(r,t,x)=0,vr > A

Let At :%, for system (2.3)-(2.8) the discrete approximate

solutions on t=0,At , 2At,---,NAt are defined by the
iterative scheme

n+ n 6Qn n n

1t ' Q- arlt At- k1(rat)AQnAt + ,ul(l’,'[, X)QltAt (2.9)
==A(r,tX)Y,QuAt + f,(r,t, X, Q)At + 9, (r,t, X, Q )AW,,

_Qr -QZH‘At—k (r,0)AQ At + 11, (r,t, X)Q) At

n TNn T 2L YA ALT LT L Xy (2.10)

=4, (1, LX) Y, QAL+ f,(r,t, X, Qz)At+ g, (1,1, X, Q )AW, ,

X), for t, = nAt,
the time increment is At = % <<1, and the Brownian motion
incrementis AW, =W (t,,)-W(t,).

here, Qi;' are the approximation to Pi(r,t

no

For convenience, we shall extend the discrete numerical
solution to continuous time. We first define the step function
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N-1 ) )
Z, =Z,(r,t,x) = Z Qit Yac gsnyany» (1=1.2) (2.11)
k=0

where 1 is the indicator function for the set G . Then we
define

t0Q, ' t
QP s [, mr.s0Z, s+ [ A(r,Lx)y,2,0s 2.12)
=[ K (r9)AQuds+ [ f(rsxz,)ds+ [ g,(r.sxZ,)dW,

t0Q s t '
QP +j0 a_r2d5+-[° (1, X)ZZSds-I-J.O 4oL X)Y, 2,8 (2.13)

= E kz(r,s)AQZSds+J'; fz(r,s,x,ZZS)ds+J'; 0, (r.$.X.Z,,)dW.,,

withQ,, =P (r,0,Xx),Q, =Q.(r,t,x). They are
straightforward to check that

Z(rt,x)=Q =Q/(r,t,,x),(i=12).

First, we state the assumptions about the stochastic age-
dependent population system with diffusion that will be
considered:

(i) f.(r,t,x,0)=0, g.(r,t,x,0)=0; (i=12).

(ii)( Lipschitz condition) there exists a positive constant K
such that p,, p, €C

‘ fi(rat’ X, pl)_ fi (r’ta X, pz) ‘ 4 ” gi(r’ta X, pl)_ gi(rat’ X, pz) ”2 (214)
<K[p—-p,l-aet;

(i) g (r,t,x), A(r,t,x) , A(r,t,x) and k(r,t)
(i=12) are continuous in Q such that

0<u(rt,x)< <o, 0SB (rt,x)<B<m,

0<A(rt,x)<A <o, k,<k(r,t)<k. (.15

(iv) Vi (t,x) (i=12)areboundin Q suchthat y, <y.

Definition 2 Suppose that P, are random variable such

that E | P, [?< 0. For a given step size A >0, a numerical
method is said to be exponentially stable in mean square on
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Egs.(2.3)-(2.8) if there is a pair of positive constants y and
N, such that with initial data P,

2 N1 2 —
EIQIF=NEIR, e,
vn=0,12,---, (i=12).
3. THE MAIN RESULTS
In this section, we shall provide some lemmas which are
necessary for the proof of our result. Because Q, are the

discrete numerical solution of Egs. (2.3)-(2.8), we first study
properties of Q, .

Lemma 3.1. Under assumptions (i)—(iv), forany T >0,

sup E|Q, ’<C,, supE|Q,[<C,

0<t<T 0<t<T

3.1

where C,;,(i =1,2) are positive constant independent of A,
but they depend on Q,,, (i=12) and T

Proof. From Eqgs. (2.1) and (2.12), applying 1t6 formula to
|Q, I° vields.

Q.
t 0
= Qp [ +2 jo jo [(—% +k,(r,t)AQ, )Q,. Jdxdrds
t
—ZIO Io ,U«l(l’, S, X)leledXd rds
t
—ZIO .[o Zl(r’t’ X) yzzlsledXd rds
+2 L: jo f (r,s,x,2,.)Q,dxdrds
2, [, 6.(rs.x.2,)Qdxraw,

t
+J'O llg,(r.s,%,Z,,)|2ds.

Since

_ I: jo aaers Q,.dxdrds
_ _% [} ] [Q¥(A.5.%)~ Q(0.5,x)]dxds

- %J'; _[r (J'OA B2(r,s,X)Q,(r,s, x)dr)?dxds,

www.ijcit.com
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by (iii) and Holder inequality, we have

t ans —2t 2
2| [ > Qdxdrds < Af [ 1Q [ ds.

However, by (iii), we have

t
J.o J.o k, (r,s)AQ,Q, dxdrds
t
- _Io .[o kl(r,S)Vle 'Vledxdrds.
t
<k, [ Q. IF ds.

Therefore, we get that

—ort t
|Qu <l Qu P +AB"[ Qs P ds—2k, [ 11Q, [l ds
_rt —_ ot
201 |Q, 112, | ds+ 227 |Qy |1 Z,, | ds
t 2 t 2
#[ 1 1.(rs, 0 Z) P ds+ [ 119,(r,5,%,.Z,,) I ds
t t
+_[0 1Q, F ds+2_[O .[o 9,(r,S, X, Z,,)Q, dxdW.dr.

Now, it follows that for any t €[0,T]

Esup |Q I*

0<s<t

<EQ,P+Aj’ I; E sup|Q, 2ds

O<s<t

—2k, Lj E sup|Q, 2ds

O<s<t

t
+i[ Esup|Q, [* ds

0<s<t

+ﬁj; Esup|Z, [ ds

0<s<t

Zy[ 2
+2¥ | Esup|Q,[ ds

0<s<t
— t
+2¥[ Esup|Z,, [ ds
0 0<s<t
t 2
+[ EIf(rs,%2,)F ds
t 2
[ Elg,(r,s,%2,)If ds

+2E sup I: J'O Q,9,(r,7,x,Z,, )drdxdW..

0<s<t
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Using condition (ii) yields

Esup|Q,

O<s<t

e
<E|Quf HAB ~2k+a+1Y)[ Esup|Qy [ ds(3.2)
+(;7+2K2+/TV)J:|ZB|2

+2E sup Ls J'O Q. 9,(r,7,Xx,Z, )drdxdW_.

O<s<t

By Burkholder-Davis-Gundy’s inequality (see, for example,
[14]), we have

Efsup [ [, Qu0,(r.7.%.Z,,)dW,]

O<s<t

t
<3E[sup | Qi | ([, 119(r,8,%Z,,) I} ds)*”]

0<s<t

1 ) t ) (3.3
< Elsup QP14 Ky ll0,(r.,x.2,) I ds

0<s<t

1 t
SZ E[SUp |Q15 ’2]+ Kl' KZ_[O E ’ le |2 dS,

O<s<t
)

for some positive constant K, > 0. Thus, it follows from (3.2)
and (3.3)

Esup |Q, < 2E|Qy [F +2(AB” - 2k, + 21 + 2K? + 2K K>

O<s<t

+22Y) jo‘ Esup|Q,kds Vte[0T].

0<r<s

In the same proof way, we can

Esup | Qy < 2E [Qy 2 +2(AB° —2m?k, + 27 + 2K ? + 2K, K2

0<s<t

+217) j; Esup|Q,l2ds  Wte[O,T].

0<r<s

Now, Gronwall’s lemma obviously implies the required result.
The proof is complete.

Lemma 3.2. Under the assumptions (i)-(iv), for any
T>0,

Esup |Q, —Z, ’<C,At sup E|Q, [

0<t<T te[0,T]

www.ijcit.com
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Esup |Q, —Z, '<C,At sup E|Q, [*.

0<t<T te[0,T]

(3.4)

Proof. For YVt €[0,T], there exists an integer K such
that t € [KAL, (K +1)At) . We have

Qlt - th = Qlt - Qﬁ

_ t @1& t
_[km . ds+Lm k (r,s)AQ,ds

t t
- -[kAt 4 (r, s, X)Z,ds — .[kAt A (1,1, X)y,Z,ds
t t
* Ikm f,(r.s,x,Z,;)ds + J.kAt 9,(r,8, X, Z,)dW,.

Thus,

|Qlt _Zn |2
<6 @mds|2+6|f k,(r,3)AQ, dsP
T Jkat or kat ’ s

t t
+6|Ikm #4(1r,8,%) ZlSdS|2+6|IkAt A (rt.x)y,Z,dspP
+6|.[:At fl(r,S,X,le)dS|2+6|j:At gl(r,S,X,le)dW5|2_

Now, the Cauchy-Schwarz inequality and the assumptions (i)-
(iv) give

‘Qn _zn ‘2
t0Q —24+ [t

< [F X152 2

<BAt Lm| o Pds+6j At jm IAQ, 2ds

A6TA |Z,F ds+67°YA[! |Z,, [ ds

+6AtJ~I | £,(r,8,%,Z,) ] ds+6|ft (r,s,%,Z,,)dW, |
kAtl”’ls kAtgl 2 M &1 S
t,0Q st oaeft

< |~ <1s |2 2 2

<BAt Lm| o Pds+6j At jm IAQ, [2ds+6 77°At Lm\zls\ ds

—n t t t
67 YA |2, ds+5K?AL[ [Z, [ ds+5] [ 0,(r,5,x,Z,)dW, [,

whence applying the Burkholder-Davis-Gundy inequality and
condition (ii) leads to

t 2 t 2
Esup [[ g,(r,s,%2,)dW,<C,[ Esup|Z,[ ds,

te[0,T] te[0.T]

where C, is a constant. Because the differential operator -

and Laplace operator A are bounded linear operator , we
obtain
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E sup |Q1t —th |2

te[0,T]

<6C,At sup E|Q,P

te[0,T]
+6( 1z °At+ 7 2y ALK 2AEC, ) At sup]E|le|2,

te[0,T

where C, is a constant.

As the same as above, we can also get

E sup |Q2t _ZZt |2

te[0,T]

<6C,At sup E|Q,

te[0,T]

+6(1°At+ 72y "At+K2At+C; ) At sup E|Q, 2,

te[0,T]

The result (3.4) is obtained.

We are now in a position to prove a strong convergence
result

Lemma 3.3. Under assumptions (i)-(iv), forany T >0

sup E |Q1t - Plt |2S ClTAt sup] E | le |2,

0<t<T te[0,T

P, F<C, At sup E|Q, [*. (3.5)

te[0,T]

sup E |Q2t -

0<t<T

where C,; (i =1 2) are independent of At, but it depends on

T,
Proof. Combining (2.3) with (2.12) has

Pn _Qlt
= [ AR =Quds [ (r)(AP,-AQ, ) s
0 or 0
_J.; lu’l(r’ S, X)(Pls - le)ds - J.; j‘1(r5t9 X) Y, (Pls - le)ds
+ (1(r.5.%.P,) ~ £,(r.5.x.Z,,))ds

t
+j0 (gl(r’ S, X, Pls) - gl(ra S, X, le ))dWs .

Therefore using It6 formula, along with the Cauchy-Schwarz
inequality and (ii) yields,

www.ijcit.com
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|Pe=Qu [’
— j;<as—le,As—lLa(P a;Q )>ds
+2[ <k, (r.9)(P, ~Qy). AP, — AQ,, > ds
2] <Py~ Q4 (r. 8. X)(P ~ Z,)) > s
~2[ <Py~ QA5 X)Y, (P, - Z,) > Os
+2[ <P, =Qy. fi(r,5.X P~ f(r,5,x,2,,) > ds
+[119,(r.5.x R - 9(r,5,x,Z,,) | ds
42 (R~ Qs (0,(r, 5, % R) - 0, ( 5, %, 2, )W,
<AF (1R~ Qufds~2k, [ 1IP.~QulPds
+201[ [P, =2, ||P, ~Q, |ds+ 227! | Py~ Z,, | P, ~Q, | 05
+2K [Py~ Q|| P, ~Z, | ds + K2 [ | P~ Z,, [ ds

t
+ 2_[0 (Pls - le’ gl(ra S, X, Pls) - gl(r> S, X, le))dWs
Hence, forany t €[0,T]

E SUp]‘ Plt _Qlt |2

te[0,T

2 — T
<(AS +a+2y+K-2k)| Esup |P,—Q, [ dt
0 oo (3.6),

— o e 7 2
HA+ 2y +K+KE[ |R,-2Z, [ dt
t
+2Ets[LOIFr)] IO (R[s _Q157(gl(r) Sa Xa Pls) - g]_(rﬁ S) X) le))dWs)

By Burkholder-Davis-Gundy’s inequality, we have

t
E sup [/ (P ~Qur (0,1, 5,%.P) - 6,1, .%.Z,.))dW,)

te[0,T]
< klE[sup | Pn _Qn ‘X

0<t<T

T /
(], 0.8, % R) = ,(r,5,.Z,) [} 65)*]

3.7)

1 T
< Elsup R, -Q, P+, EIR -2, P,

0<t<T

where k; , and K, are two positive constants. Therefore
inserting (3.7) into (3.6) has
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E sup | P1t _Qlt |2

te[0,T]

<(AB*+I+AT+K -2k )j E sup |P,—Q,2dt

te[0,T]

HE+AY+K+K2+2K)[ (| R~ Z, [ it

1
+-E sup ’ Pll _Qlt |2 .

te[0,T]

Hence,

Esup [P -Q, f

te[0,T]
s2(A32+/7+/TV+K*2ko)IT E sup|P,—Q,[2dt

0 te[0,T]

+2(E+ Ay + K+ K2+2K1)j0T\ P, —Z, [ dt

< Z(ABZ+/7+/TV+ K_Zko)IT E sup [P, —Q, [* dt
0 teoT)
_ T

FA(EH LY+ KK 2K) [ (1Qu =2, [P 4] Py —Qy et

<2(AB+37+37Y +3K +2K? + 4K, - 2k,)[ E sup |R, ~Q, [’ ds
te[0,T]

HAE+AY+K K2 2K)[11Q =2, [ dt.

Applying Lemma 3.2 we obtain a bound of the form

;
Esup [R—Q < DyAt+D,[ E sup | B, -Q, 2 ds,
se[0,t

te[0,T]

where

D, =4(fi+ A7 +K +K?+2K)TC,, sup E|Q, [

te[0,T]

D, =2(AB°+31+31y +3K +2K? + 4K, - 2k,)

By applying the Gronwall inequality, we have the following

inequality

E[ sup | P, —Q, I | < D, Atexp(D,,T).

te[0,T]

In the same proof procedure, we can get

www.ijcit.com

E[ sup | P2t _QZt |2 < D21Atexp(D22T)

te[0,T]

where

D22 = D12-

By Lemma 3.1, (3.5) is obtained. The proof is proved.

Lemma 3.4. Under assumptions (i)-(iv), the trivial
solutions of Eqs.(2.3)-(2.8) are exponentially stable in mean

square. That is, there is a pair of positive constants A and

M such that, for any P,

E|RM)P<ME|P,[Pe™, Wvt>0,

EIRM)P<ME|P,[Fe™, Vt>0.

3.8)

The proof of this lemma is an analogous to that of Theorem in

[15].

Now we are in a position to prove the main result: Theorem

3.5.

Theorem 3.5. Under assumptions (i)—(iv), the Euler
method applied to Egs.(2.3)-(2.8) is exponentially stable in

mean square.

The proof of this Theorem is an analogous to that of

Theorem 2.2 in [14].

4, AN EXAMPLE

Consider the following stochastic age-structured population

system with diffusion

it @4 AP, +2X——— ! =P
ot or -1y
=—(x)?y,P—txP+PdB, in(0,1)x(0,T)x(0.1),
i aP —2r*AP, + 2X—— L =P,
6t or (1-r)?
——(2X)?y,P,~2txP,+P,dB,, in(0,1)x(0,T)x(0.1),
1 X .
ROLY =], WPi(r,t,x)dr, in (0,T)x(0,1),
R(r.0.) = exp(- ), in (0.0 (0.1,
R(r,t,x) =0, on2=(0,1)x(0,T)x{0,1}
y,(t,x) = J'O1 P(r,t,x)dr, inQ,

(4.1)

(4.2)
(4.3

(4.4)
(4.5)
(4.6)
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here B, is a real standard Brownian motion (so, M = R and
W =1). We can set this problem in our formulation by taking
H = L*([0,1]x[0,1]) , V =W, ([0,1]x[0,1]) (a Sobolev
space with elements satisfying the boundary conditions above

),

M =R,k (r,t,x)=ir?, g (r,t,x)=—-2

(l_r)z >

B(rtx) =25, fi(rtxR)=-itxR
and

gi(rata P|): R. Pi(rvoa X) :xexp(—ﬁ), (i=12).

Clearly, the operators fi and @, satisfy conditions (i) and

(i), ki (t,x), g (r,t,x), B(r,t,x) and A (r,t,Xx) satisfy
condition (iii), V;(t,X) satisfy condition (iv). Consequently,
the numerical solutions of (4.1)-(4.6) are exponential stability
for any (r,t,x)e(0,1)x(0,T)x(0,1) in the sense of
Theorem 3.5.

Take T=1, X=1 in Egs.(4.1)-(4.6). We give the
pictures below with fixed step sizes At=0.005 ,

Ar =0.05. Six pictures are numerical simulations of the
stochastic age-structured competitive system equations with
100, 1000 and 10000 experiments respectively. (Figurel.)

Numerical Solution with 100 Test Numerical Solution with 100 Test

P, (tx)

05 T 5 T
. 00 00 c 00

Numerical Solution with 1000 Test

04, : | o
02| L ——
o : -,

0 ST

1 e
5 o 08

Numerical Solution with 10000 Test

04 4 _
<02 2 :
o . .

%] g R G {? - JREEN
05 "5 | 05 ~~—""05
r 0 t r 00

Figure 1. Exponential stability of numerical solutions to
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stochastic age-structured competitive population system with
diffusion
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