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1. INTRODUCTION 

Stochastic differential equations have many important 
applications in such areas as economics, biology, finance, 
ecology and other sciences[1-3]. In the present investigation, 
the random behavior of the death and influence of external 
environment process are carefully incorporated into the age-
dependent population equations to obtain a system of stochastic 
differential equations that model age-dependent population 
dynamics. This age-dependent population model is of 
theoretical interest.  

The effects of the stochastic environmental noise 
considerations lead to stochastic age-structured population 
systems, which are more realistic. The study of stochastic age-
structured single species system was initiated by Zhang [4]. 
Since then, existence, uniqueness, stability and convergence of 
solutions to such stochastic population system have received 
many attentions from several authors. For example, Li [5,6] 
investigated convergence of numerical solutions to stochastic 
age-dependent population system with Poisson jumps, 
diffusions and Markovian. When considering the diffusion of 
the population, Zhang [7] developed numerical scheme and 
showed the convergence of the numerical approximation 
solution for a stochastic age-dependent population system. In 
addition, Zhang [8,9] studied the existence, uniqueness and 
exponential stability of numerical solutions for a stochastic 
age-structured population system with diffusion. Wang [10] 
investigated convergence of the semi-implicit Euler method for 

stochastic age-dependent population equations with Poisson 
jumps.  

For the problem of multi-species, Liu [11] studied discrete 
competitive and cooperative models of Lotka-Volterra type. 
Luo [12] investigated optimal birth control for predator-prey 
system of three species with age-structured. However, their 
investigations did not take stochastic factors into account. To 
the best of our knowledge, there haven’t been any results on 
the topic of stochastic competitive population system of two 
species with diffusion.  

In this paper, we shall discuss the exponential stability of 
stochastic partial differential equations. That is, we consider 
the exponential stability of stochastic age-structured 
competitive population systems with diffusion  
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 Where ( 1 2)i   , (0 )t T  , (0 )r A  , x , 

( )iP r t x  are the density with respect to age a  of ith  

population at time t  and in the location x , ( )i r t x    and 
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( )i r t x    denote the fertility rate and mortality rate of 

females of age r  at time t  and in spatial position 

x ,respectively.   denotes the Laplace operator with respect 

to the space variable, ik  (constant) 0  are the diffusion 

coefficient. ( )i r t x    represent the interspecific acting 

functions and they are all bounded. 

( ) ( ) tdW

i i i i dt
f r t x P g r t x P        denote effects of external 

environment for population system, such as emigration and 
earthquake and  so on. 

In general, stochastic age-structures mathematical models 
with diffusion rarely has an explicit solution. Thus, numerical 
approximation schemes are invaluable tools for exploring its 
properties. In this paper, we will develop a numerical 
approximation method for stochastic age-structures population 
system with diffusion of the type described by Eqs. 

(1 1) (1 6)   . The numerical solution is defined by an implicit 

equation containing partial derivative. In particular, our results 
extend those of  Zhang [13].  

The structure of the paper is as follows: In section 2, we 
begin with some preliminary results, which are essential for our 
analysis, and introduce Euler approximation. In section 3, we 
give the main result that the Euler method is exponential stable 
in mean square sense under some conditions, and the proof of 
this main result is completed. In section 4, we provide an 
example to illustrate our result.  

2. PRELIMINARIES AND EULER APPROXIMATION 
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V   is the dual space of V. We denote by     and || || the 

norms in V  and V   respectively; by ,     the duality 

product between V , V  , and by ( )  the scalar product in 

H , and m  is a constant such that || ||x m x x V    . 

For an operator B L  ( )M H  be the space of all bounded 

linear operators from M  into H , we denote by 2|| ||B  the 

Hilbert-Schmidt norm, i.e.  

2

2|| || ( )TB tr BWB 


Let ( F , )P  be a complete probability space with a 

filtrations 0{ }t tF   satisfying the usual conditions (i.e., it is 

increasing and right continuous while 0F  contains all P -null 

sets).  

Let ([0 ] )C C T H    be the space of all continuous 

function from [0 ]T  into H  with sup-norm 

0|| || sup ( )C s T s     , ([0 ] )p p

VL L T V    and 

([0 ] )p p

HL L T H   . 

Definition 1  Let ( {F F   } )t P  be the stochastic 

basis and t  a Wiener process. Suppose that 0iP  ( 1 2)i    

are random variables such that 
2

0iE P    . A stochastic 

process itP  ( 1 2)i    are said to be the solution on   to the 

stochastic age-structured population system for [0 ]t T   if 

the following conditions are satisfied:  

(1) itP  are F t  -measurable random variable ( 1 2)i   ;  


2(0 ) ( (0 ))p

itP I T V L C T V       ( 1 2)i   

 1p  , 0T  , where (0 )pI T V   denotes the space of 

all V-valued processes 
[0 ]( )t t TP  

 (we will write tP  for short) 

measurable (from [0 ]T   into V ), and satisfying 

0
|| || ( 1 2)

T
p

itE p dt i     

Here (0 )C T V   denotes the space of all continuous functions 

from [0 ]T  to V ;  

(3) They satisfy the equation:  
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for all v V , [0 ]t T  , a.e. w , where the 

stochastic integrals are understood in the ˆIto s  sense.  

We consider the exponential stability of the following 
stochastic age-structured competitive population systems with 
diffusion  
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A  is the maximal age of the population species, so 

( ) 0iP r t x r A      

Let T
N

t  , for system (2.3)-(2.8) the discrete approximate 

solutions on 0t t  , 2 t N t     are defined by the 

iterative scheme  
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here, 
n

itQ  are the approximation to ( )i nP r t x  , for nt n t  , 

the time increment is 1T
N

t   , and the Brownian motion 

increment is 1( ) ( )n n nW W t W t   .  

For convenience, we shall extend the discrete numerical 
solution to continuous time. We first define the step function  
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with 0 ( 0 )i iQ P r x   , ( )it iQ Q r t x   . They are 

straightforward to check that  

( ) ( ) ( 1 2)k

i k it i kZ r t x Q Q r t x i         

 First, we state the assumptions about the stochastic age-
dependent population system with diffusion that will be 
considered:  

(i) ( 0) 0if r t x    , ( 0) 0ig r t x    ; ( 1 2)i   .  

(ii)( Lipschitz condition) there exists a positive constant K  

such that 1 2p p C    

 1 2 1 2 2
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(iii) ( )i r t x   , ( )i r t x    , ( )i r t x    and ( )ik r t  

( 1 2)i    are continuous in Q  such that 

0 ( ) 0 ( )i ir t x r t x               

 00 ( ) ( )i ir t x k k r t k           

(iv) ( )iy t x  ( 1 2)i   are bound in Q  such that iy y .  

Definition 2  Suppose that 0iP  are random variable such 

that 
2

0iE P    . For a given step size 0  , a numerical 

method is said to be exponentially stable in mean square on 
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Eqs.(2.3)-(2.8) if there is a pair of positive constants   and 

N , such that with initial data 
0iP ,  
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3. THE MAIN RESULTS 

In this section, we shall provide some lemmas which are 

necessary for the proof of our result. Because itQ  are the 

discrete numerical solution of Eqs. (2.3)-(2.8), we first study 

properties of itQ .  
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 Using condition (ii) yields 
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for some positive constant 1 0K  . Thus, it follows from (3.2) 

and (3.3) 

22 2 2 2

1 10 0 1
0

2
1

0 0

sup 2 2( 2 2 2 2

2 ) sup [0 ]

s
s t

t

r
r s

E Q E Q A k K K K

y E Q ds t T





 

 

         

      



In the same proof way, we can 
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Now, Gronwall’s lemma obviously implies the required result. 
The proof is complete. 
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and Laplace operator   are bounded linear operator , we 
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The result (3.4) is obtained. 

We are now in a position to prove a strong convergence 
result 

Lemma 3.3.  Under assumptions (i)-(iv), for any 0T   

2 2

1 1 1 1
0 [0 ]

sup supt t T s
t T t T

E Q P C t E Q
   

        

2 2

2 2 2 2
0 [0 ]

sup supt t T s
t T t T

E Q P C t E Q
   

         

where ( 1 2)iTC i    are independent of t , but it depends on 

T ., 

Proof. Combining (2.3) with (2.12) has 

1 1

1 1
1 1 1

0 0

1 1 1 1 2 1 1
0 0

1 1 1 1
0

1 1 1 1
0

( )
( )( )

( )( ) ( ) ( )

( ( ) ( ))

( ( ) ( ))

t t

t t
s s

s s

t t

s s s s

t

s s

t

s s s

P Q

P Q
ds k r t P Q ds

r

r s x P Z ds r t x y P Z ds

f r s x P f r s x Z ds

g r s x P g r s x Z dW

 



 
    



       

       

        

 

 







Therefore using Itô formula, along with the Cauchy-Schwarz 
inequality and (ii) yields, 

2

1 1

1 1
1 1

0

1 1 1 1 1
0

1 1 1 1 1
0

1 1 1 2 1 1
0

1 1 1 1 1 1
0

1
0

( )
2

2 ( )( )

2 ( )( )

2 ( ) ( )

2 ( ) ( )

|| (

t t

t
s s

s s

t

s s s s

t

s s s s

t

s s s s

t

s s s s

t

P Q

P Q
P Q ds

r

k r s P Q P Q ds

P Q r s x P Z ds

P Q r s x y P Z ds

P Q f r s x P f r s x Z ds

g





  

 
    



      

       

       

           














2

1 1 2

1 1 1 1 1 1
0

2 22 2 2
1 1 0 1 1

0 0

1 1 1 1 1 1 1 1
0 0

2

1 1 1 1
0 0

) ( ) ||

2 ( ( ( ) ( ))

2 || ||

2 2

2

s s

t

s s s s t

s s s s

t t

s s s s s s s s

t t

s s s s

r s x P g r s x Z ds

P Q g r s x P g r s x Z dW

A P Q ds k P Q ds

P Z P Q ds y P Z P Q ds

K P Q P Z ds K



 

      

         

     

           

      



 

 

 
2

1 1

1 1 1 1 1 12 ( ( ) ( ))

s s

t

s s s s s
o

P Z ds

P Q g r s x P g r s x Z dW

  

         

 

Hence, for any [0 ]t T   

2

1 1
[0 ]

2
2

0 1 1
0 [0 ]

2 2

1 1
0

1 1 1 1 1 1
0[0 ]

sup

( 2 ) sup

( )

2 sup ( ( ( ) ( )) )

t t
t T

T

t t
t T

T

t t

t

s s s s s
t T

E P Q

y K k E P Q dt

y K K E P Z dt

E P Q g r s x P g r s x Z dW

A  

 



 

 

 

  

       

      

          









By Burkholder-Davis-Gundy’s inequality, we have 
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where 1k , and 1K  are two positive constants. Therefore 

inserting (3.7) into (3.6) has 
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 Applying Lemma 3.2 we obtain a bound of the form 
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By applying the Gronwall inequality, we have the following 

inequality 
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In the same proof procedure, we can get 
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21 11D D


22 12D D 


By Lemma 3.1, (3.5) is obtained. The proof is proved. 

Lemma 3.4. Under assumptions (i)–(iv), the trivial 
solutions of Eqs.(2.3)-(2.8) are exponentially stable in mean 

square. That is, there is a pair of positive constants    and  

M  such that, for any  0P  

2 2

1 0( ) 0tE P t ME P e t        



2 2

2 0( ) 0tE P t ME P e t        
 

The proof of this lemma is an analogous to that of Theorem in 
[15].  

Now we are in a position to prove the main result: Theorem 
3.5.  

Theorem 3.5.  Under assumptions (i)–(iv), the Euler 
method applied to Eqs.(2.3)-(2.8) is exponentially stable in 
mean square.  

The proof of this Theorem is an analogous to that of 
Theorem 2.2 in [14]. 

4. AN EXAMPLE 

Consider the following stochastic age-structured population 
system with diffusion 
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here tB  is a real standard Brownian motion (so, M R  and 

1W  ). We can set this problem in our formulation by taking 
2([0 1] [0 1])H L    , 

1

0 ([0 1] [0 1])V W     (a Sobolev 

space with elements satisfying the boundary conditions above 

),  

 

M R 
2( )ik r t x ir    2

2

(1 )
( ) x

i r
r t x


   

2(1 )
( ) x

i r
r t x


    ( )i i if r t x P itxP     

and  

( )i i ig r t P P    1
1

( 0 ) exp( )i r
P r x x


     ( 1 2)i   

 

Clearly, the operators if  and ig  satisfy conditions (i) and 

(ii), ( )ik t x , ( )i r t x   , ( )i r t x    and ( )i r t x    satisfy 

condition (iii), ( )iy t x  satisfy condition (iv). Consequently, 

the numerical solutions of (4.1)-(4.6) are exponential stability 

for any ( ) (0 1) (0 ) (0 1)r t x T         in the sense of 

Theorem 3.5.  

Take 1T  , 1
2

x   in Eqs.(4.1)-(4.6). We give the 

pictures below with fixed step sizes 0 005t   , 

0 05r   . Six pictures are numerical simulations of the 

stochastic age-structured competitive system equations with 

100 , 1000  and 10000  experiments respectively. (Figure1.) 

Figure 1. Exponential stability of numerical solutions to 

stochastic age-structured competitive population system with 
diffusion 
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