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Abstract—Basing on Learning with errors over rings (RLWE) 

assumption, we provide a new multi-bit somewhat homomorphic 

encryption scheme. We introduce canonical embedding to 

transform a ring element into a vector, such that polynomial 

multiplication can be performed in 
~

(nlog n) scalar operations, 

and ciphertext size is reduced at the same time. The CPA security 

of this scheme can be reduced into RLWE assumption. 
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I. INTRODUCTION  

The idea of homomorphic encryption can be traced back 

to 1978 by Ridest et al.[1], it means that an entity can carry out 

computations on encrypted data without decryption. This trait 

of encryption scheme sounds appealing in network services. 

People need to conduct various kinds of operations, such as 

search, sum up or computing the average value, on data stored 

in a remote server. Suppose every operation requires a series 

of works including downloading the ciphertext, decryption, 

compute the target value, encryption and upload the new 

ciphertext, the communication and computation cost may 

grow very large and become unbearable. Homomorphic 

encryption permits operations on ciphertext directly, and thus 

reduce communication and computation cost. The most 

prominent application of homomorphic encryption is the 

outsourcing of data and computation on clouds. Besides these, 

there are some other interesting applications including private 

information retrieval (PIR), electronic voting, database 

encryption delegate computation and secure multiparty 

computation. 

If an encryption scheme can compute any function of the 

ciphertexts, then it is called a Fully Homomorphic Encryption 

(FHE) scheme. Otherwise, if it can only evaluate a limited set 

of circuits about ciphertexts, then it is called a Somewhat 

Homomorphic Encryption (SHE) scheme. The existence and 

construction of FHE schemes remains an open problem in 

cryptography. The substantial progress was achieved by 

Gentry in STOC’2009[2]. Basing on hard problems on ideal 

lattices, Gentry proposed the first FHE scheme. Following this 

work, there have appeared some improvements with higher 

efficiency and better performance. In 2010, Smart and 

Vercauteren improved Gentry’s scheme by shorten the key 

size and ciphertext size[3]. In Asiacrypt’2010, Stehle and 

Steinfeld also proposed an improved scheme of Gentry’s 

scheme[4], which introduced decryption errors to reduce 

computation cost.  

In the past years, people also proposed new schemes, 

some of which are quite potential in improving the 

performance and thus suitable for applications. In Eurocrypt 

2010, Dijk, Gentry and Halevi et al. [5] promoted another 

construction of fully homomorphic encryption scheme, called 

DGHV. Using a Somewhat homomorphic encryption scheme 

on integers other than on ideal lattice, DGHV scheme was 

more succinct than Gentry’s scheme. In 2011, Brakerski et al. 
[6] proposed two schemes that are based on Learning with 

Errors problem over Rings (RLWE). They also presented new 

techniques called re-linearization and dimension-modulus 

reduction to control noise and the length of encrypted data. 

In the year 2011, Bogdanov et.al.[7] proposed an 

algorithm based on codes, this work has both a clear concept 

and a concise technique to bootstrapping without squashing 

the decryption algorithm. More recent studies by Rothblum[8] 

and Goldwasser[9] deals with changing a private key 

homomorphic encryption scheme into a public key one. 

However, all of the algorithms are far away from 

practical uses. There are still a lot of works to do in this area. 

In order to promote performance and make homomorphic 

encryption practical, some researchers try a different way from 

the existing works. Other than designing a perfect scheme that 

is ideal in theory but not practical, they prefer to construct 

encryption schemes that can only evaluate low-degree 

polynomials about the ciphertexts, namely, Somewhat 

homomorphic encryption schemes. The predominance of SHE 

lies in a higher performance and efficiency. However, most of 

the existing schemes, including Gentry’s SHE scheme, are 

designed on message space {0,1}, this means that the scheme 

can only encrypt one bit in each encryption. In 2011, Gentry et 

al. [10] presented a practical SHE scheme based on BGN 

scheme that was constructed by Gentry, Peikert and 

Vaikuntanathan in 2008[11]. The new scheme was based on 

RLWE assumption, it allows any times of addition and one 

multiplication, and can also operate in a larger message space. 

But it has a deficiency that can only allow one multiplication. 
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Although any feasible computation can be expressed as a 

Boolean circuit in theory, we still need to design 

homomorphic encryption schemes for larger message spaces 

for practical uses, and at the same time, allowing more 

multiplication so as to evaluate a larger set of circuits. 

Following the idea of SHE and aiming at encryption on a 

larger message space, we present a multi-bit SHE scheme that 

is basing on RLWE (Learning With Error over Rings) 

problem. Compared to existing schemes, our scheme has the 

following advantages: 

(1) Most of the existing works can only encrypt one bit in an 

encryption operation, while our scheme can encrypt 

multi-bits, this is suitable for a large message space.  

(2) The scheme is constructed basing on RLWE assumption, 

RLWE assumption is tighter than standard LWE 

assumption, so schemes basing on RLWE has a higher 

performance with same security requirements. Among the 

existing schems, BV11 was constructed on RLWE, but it 

can only encrypt one bit. Moreover, we use canonical 

embedding to reduce key size and computation cost, thus 

can achieve a more time efficient scheme and also small 

key length. 

(3) The scheme allow any times of addition and more than 

one times of multiplication.  
 

II. PRELIMINARIES 

A. Homomorphic Encryption schemes 

Definition 1 A Homomorphic Encryption  scheme (HE) 

can be described as a 4-tuple of algorithms HE=( KeyGen, 

Enc, Dec, Eval). The algorithms are probabilistic polynomial 

time and satisfy the following properties: 

KeyGen(1λ)：input a security parameter λ, output (pk, 

sk, evk), where pk and sk are the public encryption key and 

private decryption key, and evk is the public homomorphic 

evaluation key. 

Enc(pk, m): input the encryption key pk and a message 

m, the encryption algorithm outputs a ciphertext c, denoted as 

c=Enc(pk, m). 

Dec(sk, c): input a ciphertext c and decryption key sk, 

output a plaintext m. 

Eval(evk, f, c1, c2…, cl): input the homomorphic 

evaluation key hk, a function f and l ciphertexts c1, c2…, cl, 

output a ciphertext cf, satisfing 

cf =Enc(pk, f(Dec(sk, c1), Dec(sk, c2),……, Dec(sk, cl))) 

The above definition is a generic description of 

homomorphic encryption schemes, and the material of 

function f is omitted. Usually f can be expressed as a Boolean 

circuit on field GF(2n), and only contains ADD and OR 

operations. This means that f is made up of addition and 

multiplication of ciphertexts.  
We say an encryption scheme is strongly homomorphic if a 

homomorphicly evaluated ciphertext c* is indistinguishable 
with a normal ciphertext c which is output by the Enc 
algorithm. We say an encryption scheme is weakly 

homomorphic if the length of c* only depends on the depth of 
the circuit to be evaluated. 

B. LWE and RLWE assumption 

As a widely used tool for constructing cryptographic 

schemes on lattices, the Learning With Errors (LWE) problem 

has gained a universal notice since it is being introduced by 

Regev in 2005[12]. LWE assumption is defined as the 

following:  

Definition 2  (Decisional LWE assumption) Let n be 

security parameter, q=poly(n) is a prime, and 
n

qZs  is a 

secret vector. Then any linear combination of elements of s are 

computational indistinguishable with a uniformly random 

element in Zq, namely 

       npoly

iii

C
npoly

iiiii uaesaba
11

,,,


  

where 
n

qi Za  , ei are sampled from some error distribution, 

qen i  . A typical error distribution is the discrete Gauss 

distribution on Zq with expectation being 0 and standard 

deviation being nq 2 . 

The search version of LWE is to find s from several 

given pairs  ii ba , . 

In 2005, Regev has proved that LWE problem is at least 

as hard as the shortest vector problem in any lattice. Since 

then, LWE assumption has been used to construct public key 

encryption schemes, identity based encryption schemes, 

oblivious transfer protocol, key dependent message security 

encryption schemes and homomorphic encryption schemes[13]. 

In Eurocrypt 2010, Lyubashevsky, Peikert and Regev[14] 

discussed the efficiency of LWE assumptions. For a standard 

LWE assumption, getting one pseudorandom scalar bi∈Zq  

requires an n-dim inner production computation. They propose 

a more compact version of LWE called RLWE assumption, 

that is, LWE assumptions on a given ring, where conducting 

an n-dim inner production can get another n-dim vector. Thus 

make an efficiency improvement by n times. 
 

Definition 3 (RLWE assumption) Let f(x) be an n-degree 

polynomial with integer coefficients, q is a prime, and define a 

ring Rq as    xfxZR qq / . Let   be an error distribution 

on Rq, qRs
$

 , 
qi Ra

$

 , k=poly(n). For any given k pairs 

 k
iiiii esaba

1
,


 , where ie  abide distribution  , then ib  

is computational indistinguishable with a random uniformly 

chosen element from Rq. 

Lyubashevsky, Peikert and Regev[14] have proven that, 

the Shortest Independent Vector Problem (SIVP) or Shortest 

Vector Problem(SVP) in the worst case on ideal lattices can be 

reduced into RLWE. Their main result is described in the 

following lemma 1.   
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Lemma 1 Let K be the mth cyclotomic number field 

having dimension n=φ(m) and 
KR   be its ring of integers. 

Let   0 n , and let   2 nqq , q=1 mod m be a 

poly(n)-bounded prime such that  nq log  . Then there 

is a polynomial-time quantum reduction from  /~
n -

approximate SIVP (or SVP) to 
,

DLWER q . Alternatively, 

for any l≥1, we can replace the target problem by the problem 

of solving 
Dq,DLWER   given only l samples, 

where    4/1
log/ nlnl  is the standard deviation of 

Gauss distribution 
D . 

From lemma 1 we can immediately get to a conclusion: 

with error distribution be 
D  and    4/1

log/ nlnl , 

given l samples, the RLWE problem is at least as hard as SIVP 

problem in a lattice. 

In the above conclusion, f(x) is the mth cyclotomic 

polynomial  xm  with m=2n. While if let f(x)=xn+1 then we 

can make the a slower norm increase when conducting 

multiplication of ring elements. On account of a more clear 

description, we only use RLWE assumption on a special 

polynomial   1/  n

q xxZR  where n is a power of 2 and 

q=1 mod 2n. 

C. Canonical Embedding in polynomial rings 

Let n=2k, q=1 mod 2n is a prime, there are two ways to 

map a polynomial in Rq into a Ring vector: coefficient 

embedding and canonical embedding. 

Coefficient embedding is a “naive” method, let 

  1

110



 n

n xaxaaxa  , then coefficient embedding 

can be simply defined as: 

    n

qn Zaaxa 10 ,,  

This is a mapping from ring element to element in an ideal 

lattice. The demerit of coefficient embedding is quite clear: 

add operation can be conducted coefficient-wise, while 

multiplication is miscellaneous. 

Canonical embedding was first proposed by 

Minkowski[14]. Let  ni /exp   , then we can define 

canonical map as  

         nn Caaaxa 1231 ,,,    

Here C is the complex number field. When a polynomial is 

mapped into a vector in Cn, both add and multiplication can be 

conducted coordinate-wisely, thus make computation more 

convenient. Especially when q is a prime and q=1 mod 2n, 
12 i , i=1,…,n-1 are just the n roots of xn+1 in Zq, so a 

polynomial     1/  n

q xxZxa  can be mapped into an 

elements in 
n

qZ  or a n-dim vector on Zq.  

Example1:  Let n=4, q=17, x4+1 has 4 roots in Z17: 
753 ,,,  . In fact, we can let ω=2, then the 4 roots are: 

2, 8, 15 and 9.  

Let a(x)=x3+3x2+1, b(x)=2x3+6x+9 be polynomials 

chosen from   1/ 4

17  xxZR , through canonical 

embedding, they can be mapped into two factors: 

            )4,5,8,4(,,, 753   aaaaxa  

             8,15,10,3,,, 753   bbbbxb  

Next, we compute add and multiply in R and n

qZ  

respectively. 

Computations in R are the generic polynomial operation, that 

is  

a(x)+ b(x)=3x3+3x2+6x+10 

a(x)* b(x)=2x6+6x5+6x4+12x3+10x2+6x+9=12x3+8x2+3 

Computing in 
n

qZ  are coordinate-wise add and multiply, that 

is  

       12,15,8,7 xbxa   

       15,0,0,12 xbxa   

It can be easily validated that σ is a homomorphic mapping 

from R to 
n

qZ , namely satisfying: 

          xbxaxbxa    

And 

          xbxaxbxa  *  

Given           n

q

n Zaaaxa  1231 ,,,   , we can get 

its preimage a(x) through solving a linear equation set of n 

variables. 
 

III. MULTI-BIT HOMOMORPHIC ENCRYPTION SCHEMES 

BASED ON THE ORIGINAL REGEV SCHEME 

A. The basic scheme 

The first single-bit public key encryption scheme basing 

on LWE assumption was proposed by Regev in 2005[12], and 

basing on this scheme, people have promoted some other 

constructions and applications. The multi-bit version of 

Regev’s scheme is denoted as the following scheme1. 

Scheme 1  (Regev’s original LWE based multi-bit encryption 

scheme) 

Parameters: Suppose n is an integer and q a prime, 

satisfying   22, 22  nnq ,    qnk log11   , here ε>0 is 

a constant, the error distribution is discrete Gauss distribution, 

noted by
q  , and   nnO log/1 . Define a set 









































2
,,

2

rr
ZDr  , 1r . Let the plaintext 

length be l bits. 

 Private key: ln

qZS 
$

, the private key S is a ln  
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matrix on qZ , |S|=nllogq. 

 Public key: kn

qZA 
$

, 
lk

q

t ZESAP  , where 

E is error matrix, and lkE   , in practical use, to reduce 

key length, we can make all users share the same A, and 

transform B into its Hermit standard form, thus the length of 

public key is   qlnk 2log  bits. 

 Encryption: A message 
lZm 2  is encrypted into a 

pair  10 ,cc , where  

n

qZAac 0
, m

q
aPc t

2

1
1


  

and 
k

rDa
$

 . The ciphertext has a length of   qln 2log  

bits. 

  Decryption: m
q

cSc t

2

1
01


 . 

The above scheme can be implemented in a polynomial 

ring, which is depicted in [15] by Rückert   and Schneider as the 

following scheme 2. 

Scheme 2  (Polynomial ring implementation of scheme 1) 

Parameters: let q be a prime, nq 2mod1 , 

  1/  n

q xxZR , χ is discrete Gauss distribution. A sample 

that abides to χ is noted by   Rxe   with r≥1. Define a set Dr 

as 

1/
2

,,
2




































 n

r x
rr

ZD   

For a positive integer k, define two operations on Rk: 

(1) Multiplication of two polynomial vectors: For any 
kRyx ˆ,ˆ , RRR kk  : , 





k

i

ii yxyx
1

ˆˆ  

(2) Multiplication of one polynomial vector and one 

polynomial: for any kRxˆ , Ry ,  

  k

k Ryxyxyx  ,,ˆ
1   

 Private key: Randomly choose Rs
$

 , the length of s 

is nlog2q bits 

 Public key: Randomly choose a k-dim vector 

kRa
$

ˆ , choose error vector k

Re  ,
ˆ , k

R  ,
 is a k-dim 

discrete Gauss distribution with its value come from Rk and 

with 0 as the expectation and 

















 1

2
/1

r
nkt  as the 

standard deviation. Computing a vector 
kResab  ˆˆˆ , and 

the public key is  ba ˆ,ˆ . To decrease key length, we can also let 

all of the users share the same â , and the length of public key 

is knlog2q bits. 

 Plaintext: 1/][21  nxxZDm , the length of 

plaintext is n bits. 

 Encryption: Randomly choose k

rDr
$

ˆ , compute a 

pair  10,cc  as the ciphertext, here Rrac  ˆˆ
0

 and 

R
q

mrbc 



2

1
ˆˆ

1
, the length of  10,cc  is 2nlog2q 

bits. 

 Decryption: Compute  

2

1
ˆˆ

2

1
01







q
mre

q
mscc . 

The correctness of scheme2 is shown in [15], the authors 

also have pointed out that when 










2
30/1

r
nk , the scheme 

can decrypt correctly. We give a brief discussion in the 

following. 

To decrypt correctly, it is required that 
4

ˆˆ
q

re 


, 

here ê  is the initial error, abides to k

R  ,
, k

rDr
$

ˆ  and 

obviously 
2

r
ri  . On account of Chebyshev’s law, for n 

independent samples that abiding the same Gauss distribution 

 2,NX i  , 1≤i≤n, the summation 

 



n

i

i nnNX
1

2,  . So every coefficient of re ˆˆ  abides 

the same Gauss distribution with 0 as the expectation and 

t

r
nk

rnknrk

i

1

2221

2




























  as the standard 

deviation. Utilizing the truncated inequality of Gauss 

distribution, the probability that all of the coefficients of 

re ˆˆ  is greater than q /4 is 32

2

24
t

e
t




. When t≥30, this 

value can be neglected. So  
4

ˆˆ
q

re 


 will sure to happen, 

and thus scheme 2 can decrypt correctly. 
 

B. A somewhat homomorphic encryption scheme basing on 

scheme 2 

We propose a somewhat homomorphic encryption 

scheme that is constructed basing on scheme 2. 

 Add operation 

Given two ciphertext pairs  10,ccC   and 




 

 10 ,ccC , 

the add operation is simple and quite directly. 
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 

     

 1,0,

212121

221121

1100

,

2

1
ˆˆˆ,ˆˆˆ

2

1
ˆˆ

2

1
ˆˆ,ˆˆˆˆ

,

,

addadd

add

cc

q
mmrrbrra

q
mrb

q
mrbrara

cccc

CCCCC










 









 










 








 

The decryption process includes computing 

 
2

1
210,1,




q
mmscc addadd

, and get the plaintext of the 

sum of two plaintexts. This adding operation does not increase 

the length of ciphertext and the amount of coordinates. Here 

the error may have a slight increase after adding, but it has 

little impact on decryption.  

 Multiply operation 

Firstly, we multiply two initial ciphertexts.  

Taking into account the decryption process: 

re
q

mscc ˆˆ
2

1
01 


  

re
q

mscc 








ˆˆ
2

1
01

 

From the above formula, we can get  

 

2

00100111

0101

ˆˆ
2

1
ˆˆ

2

1

sccscccccc

sccscc

re
q

mre
q

m








 














 






























    （3-1） 

Let    2,1,0, ,,, multmultmultmult cccCCC  , where 


 110, cccmult  

01011, cccccmult





  


 002, cccmult  

So after one multiplication, the ciphertext is changed into 

a three-tuple  2,1,0, ,, multmultmultmult cccC  . To decrypt this 

new ciphertext, it is required to compute: 

 
   

 

M

q
mm

rerere
q

mre
q

m
q

mm

re
q

mre
q

m

scscc multmultmult














































4

1

ˆˆˆˆˆˆ
2

1
ˆˆ

2

1

4

1

ˆˆ
2

1
ˆˆ

2

1

2

2

2

2,1,0,

 

Next we discuss the value of m and m’. 

(1) When m=0 and m’=0,    rereM  ˆˆˆˆ  is the 

product of two polynomials in R, and each 

coefficient of M is less than 
1644

2qqq
 ;  

(2) When m=1and m’=0 (or m=0, m’=1), 

     rerere
q

M 


 ˆˆˆˆˆˆ
2

1
, each 

coefficient of M is less than 

16

3

1642

1 22 qqqqq 



; 

(3) When m=1and m’=1, each coefficient of M is greater 

than  
4

1
2

q , but is less than  

   
16

4129

4

1

44

1 222















 qqqqqq . 

According to the above discussion, in order to decrypt 

correctly, the coefficients of M should be taken into 

consideration, when the value of a certain coefficient is within 

 







 

16

4129
,

4

1 22
qqq , then the decryption result will be 1, 

else it will be 0. It should be noted that the last operation of 

decryption is done in 1/2  n

q
xZR , but not R, thus 

doubles the length of ciphertext, that is qn 2log4 .  

Through the above method, after one multiplication, the 
amount of ciphertext elements will increase by 1. So given two 

generic ciphertexts:  110 ,,,  lcccC   and 






 

 110 ,,, tcccC  , without generality, we can let l ≥ t. 

When doing addition, can pad C  with l – t zeros, namely, let 






 

  1110 ,,,,,, ltt cccccC  . When doing multiplication, 

use the method similar to formula （3-1）, we could get to a 

polynomial about s with a degree of l + t-2. In decryption, it 
needs to compute this polynomial, and then compare each 
coefficient. While the discussion domain is changed into 

2tlq
Z , and the ciphertext length is now   qtln 2log22   

This scheme has two weaknesses in efficiency: 

(1) The length of ciphertext is doubled after 

multiplication, and will be qn 2log4 . 

(2) The amount of ciphertext elements is increased in 

multiplication. 

In brief, multiplication will cause a great decrease in 

efficiency, so multiplication can only be conducted by a 

limited times in this scheme. 

IV. HOMOMORPHIC ENCRYPTION SCHEME BASING ON AN 

IMPROVED SCHEME 

 



 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 02– Issue 02, March 2013 

 

www.ijcit.com    266 

 

In this section, we make some important mortification to 

scheme2, and put forward a new homomorphic encryption 

scheme noted as scheme3 . 

A. Mortification to scheme 2 

We use canonical mapping to construct a new scheme 

basing on scheme2, in this new shceme, the operation is time-

efficient and the amount of ciphertext elements will not 

increase after homomorphic evaluations. 
 The new scheme 

Scheme 3 

- Parameters: q is a prime and nq 2mod1 , let   be a 

root of xn+1 in Zq, and   is not a divisor of 
2

1q , error 

distribution 
k

R  ,  is still a discrete Gauss distribution on Rk, 

with expectation 0 and standard deviation 


















 1

2
/1

r
nkt . Definition of Dr and polynomial vector 

operations are the same as in scheme2. 

- Private key: Rs
$

 , satisfying that s(0) is not a divisor of 

2

1q
. The length of private key is nlog2q bits. 

- Public key: Randomly choose a k-dim polynomial 

vector 
kRa

$

ˆ . Choose error vector k

Re  ,
ˆ  and compute 

kResab  ˆˆˆ . To shorten the key length, we can also 

make all of the users share a same â , and the public key is 

 ba ˆ,ˆ  with length of knlog2q bits. 

- Encryption: Encryption includes three steps. 

(1) For any given n-bits plaintext 
1Dm , let m=(m0, m1, 

…, mn-1) and randomly choose k

rDr
$

ˆ ;  

(2) Compute rbc ˆˆ
0  , rac ˆˆ

1  . Noticing that c0, c1 

are two polynomials in R, we can use canonical mapping to 

change them into vectors in 
n

qZ , namely  

       0

12

0

3

000 ,,, Ccccc n    

       1

12

1

3

111 ,,, Ccccc n    

(3) Compute  1002 ,
2

1



 nmm

q
CC  , and output 

the ciphertext  21,CC . 

- Decryption: Also includes three steps. 

(1) Use the inverse mapping of canonical mapping to 

change C1 into a polynomial   raxc ˆˆ
1  ;  

(2) Compute  

   xcrerbsrasxc 01
ˆˆˆˆˆˆ  , 

and change   sxc 1  into a vector S; 

(3) Compute   m
q

SC
2

1
mod2


   

 Correctness 

Theorem 1  When the parameters are chosen properly, 

Scheme 3 can decrypt correct. 

Proof:  

Consider the decryption process,  

  sxcm
q

CSC 


 102
2

1
  

     sxcm
q

xc 


 10
2

1
  

         12

11

12

00 ,,
2

1
,,  


 nn scscm

q
cc  

 

             

m
q

srasrarbrb nn

2

1

ˆˆ,,ˆˆˆˆ,,ˆˆ 1212




   

    We only discuss the first item, and conclusions about other 

items are the same. The first item of the above formula is  

        

   0

0

2

1
ˆˆ

2

1
ˆˆˆˆˆˆ

m
q

re

m
q

sraresra










 

Here   re ˆˆ  is a polynomial about ω in R, and after a mod 

operation, it only remain the constant term. Let 

 keee ,,ˆ
1  ,  krrr ,,ˆ

1  , then 



k

i

iirere
1

ˆˆ . And 

because k

Re  ,
ˆ , following the discussion of section 4.1, 




k

i

iire
1

 abides a Normal distribution with expectation 0 and 

standard deviation 

t

r
nk

rnknrk

i

1

2221

2






























. According to 

the truncated inequality of Normal distribution ，

  32

1

2

24

4
0Pr

tk

i

i e
t

q
e
















. When t≥30, this value can be 

ignored, so   1
4

0Pr
1












q
e

k

i

i
. 

According to the parameter requirement of scheme3,   

is not a divisor of 
2

1q , so the first item of   mod2 SC   

is not greater than 
0

2

1

4
m

qq 
 . This completes the correctness 

proof of scheme3. 

 Security 

Here we give a reduction about the CPA security of 

scheme3 into the difficulty of decisional RLWE assumption.  
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Theorem 2  For any ε>0 and    qnm log11   , if 

there exists a PPT algorithm that can attack the CPA security 

of scheme 3 with advantage є, then there exist a poly-time 

distinguisher V that for any possible private key s, can 

distinguish distribution 

 








 RsDeRaesaa R

k
$

,

$

,ˆ,ˆ|ˆˆ,ˆ 
 and the uniform 

distribution U on 
kk RR  , here    4/1

log/ nknk . 

Proof:  

We only discuss the first bit m0 of a plaintext. Suppose 

there exists a CPA attacker A that can distinguish the 

ciphertext of m0=0 and m0=1 with advantage є. We construct a 

distinguisher V which can distinguish these two distributions 

with advantage at least є/2: 

     








 10,,ˆ,,,1,10,ˆ|ˆˆ,ˆ
$

,

$

sRsDekiaRaesaa Ri

k

  

and Uniform distribution U on 
kk RR  . 

The distinguisher V is constructed as following: 

Input of V are two polynomial vectors  ba ˆ,ˆ  in 
kk RR  , 

and satisfying that each constant term of â  is 1. Now V will 

call for A to judge that whether  ba ˆ,ˆ  is abide to uniform 

distribution or is a RLER vector. 

Using  ba ˆ,ˆ  as private key, V invokes A, the latter 

generate two message bits m0, m1and send to V. V randomly 

choose  1,0i , encrypt mi and send the ciphertext back to A. 

If A can return the correct I, then V will output 1, else output 

0. 

Let the challenging ciphertext be  21,CC , if σ is 

canonical mapping, then the first bit of C1 and C2 are 

  ra ˆˆ  and    0
2

1
ˆˆ m

q
rb


   respectively. If b̂  is 

chosen randomly and uniformly in 
kR  and is independent 

with â , then the first bit of the challenging ciphertext is also 

random and uniform. In this situation, the probability of V 

output 1 is at most 1/2. On the other hand，if esab ˆˆˆ   and 

the parameters are chosen according to the requirement, then 

by assumption, probability of A correctly guess i is (1+є)/2, so 

V can output 1 with the same probability. Thus completes the 

proof, namely, V can distinguish two distributions with 

advantage є/2.                                                                         ■ 

B. Homomorphic Evaluations 

Given two ciphertexts  21,CC  and 




 

21 ,CC , here  

      12

1

3

111 ,,,  ncccC   ， 

 1002 ,
2

1



 nmm

q
CC   

      






 






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

1

12

01

3

000
2

1
,,

2

1
,

2

1
n

n m
q

cm
q

cm
q

c  

     




 


 12

1

3

111 ,,, ncccC   ， 

      






 
















1

12

01

3

0002
2

1
,,

2

1
,

2

1
n

n m
q

cm
q

cm
q

cC  

 

 Addition 

When computing the sum of two ciphertexts, we could 

simply add them coordinate-wise, and get  

  




 




 221121 ,, CCCCCC addadd
 

Where  

           




 












 12

1

12

11

3

111

11

,,, nn cccccc

CC

 

        












 












 
















11

12

0

12

00000

22

2

1
,,

2

1
nn

nn mm
q

ccmm
q

cc

CC

 

are exactly the encryption of the sum of two plaintexts. 

 Multiplication 

According to the features of canonical mapping, 

multiplication of two vectors could also done coordinate-

wisely. Let “*” denote the multiplication of vectors 

coordinate-wise, then  

  




 

 221121 *,*, CCCCCC multmult
 

and  

           




 


  12

1

12

11

3

11111 ,,,* nn ccccccCC  

 

        














 










 








 










 












1

12

01

12

00000

22

2

1

2

1
,,

2

1

2

1

*

n

n

n

n m
q

cm
q

cm
q

cm
q

c

CC

 

We discuss the decryption of the first item. 

The first item of 


22 *CC  is  

       
  










00

2

000000
4

1

2

1

2

1
mm

q
cm

q
cm

q
cc   

In the decryption process, we need to change 


11 *CC  into 

a polynomial, multiply it with s2 and then transform into a 

vector Smult, the first item of which is  

              srasraccs 


ˆˆˆˆ
11

2        （4-1） 

Noticing that  
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   

                 



resraresra

cc





ˆˆˆˆˆˆˆˆ

00     

（4-2） 

Subtract （4-2） by （4-1）,  we can get  

           

       Dresra

resrarere









ˆˆˆˆ

ˆˆˆˆˆˆˆˆ
 

The last decryption step in scheme 3 is compute C2-S,  and 

after a homomorphic multiplication, it needs to compute 

multSCC 


22 * . Then the first item is  

   
  







 00

2

0000
4

1

2

1

2

1
mm

q
cm

q
cm

q
D   

Where  

          resrac ˆˆˆˆ
0   

          resrac 


ˆˆˆˆ
0

 

Noticing that in the first item, besides the first item, all of 

the other items are multiples of  , at the same time,   is not 

a divisor of  
4

1
2

q , so we can divide the first item by  , and 

get the residue: 

           

               

        
  













00

2

0

0

4

1
0ˆˆ00ˆˆ

2

1

0ˆˆ00ˆˆ
2

1
0ˆˆ00ˆˆ

0ˆˆ00ˆˆ0ˆˆ0ˆˆ

mm
q

resram
q

resram
q

resra

resrarere

Also noticing that s(0) is not a divisor of 
2

1q
, dividing the 

above formula by s(0) and get the residue, the first item is 

turned into 

       

  
 


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







00

2

0

0

4

1
0ˆˆ

2

1

0ˆˆ
2

1
0ˆˆ0ˆˆ

mm
q

rem
q

rem
q

rere

 

Here   0ˆˆ re  and   0ˆˆ re   are the constant items of 

re ˆˆ  and re  ˆˆ  respectively. According to the discussion 

in section 3.1, the probability of each coefficient in re ˆˆ  

greater than q /4 is 32

2

24
t

e
t




, when t≥30, this value can be 

ignored. So 
4

ˆˆ
q

re 


 holds with a probability close to 1. 

Consulting also the discussion in 4.2.2, when Δ>
 

4

1
2

q
 the 

decryption result is 1 in 2q
Z , else, is 0. Thus obtain the 

multiplication of two bits. This argument can be extended to 

other elements of the ciphertext, and we could soon get to the 

result that in scheme 3, 


22 *CC  can be correctly decrypted 

and get to the multiplication of two plaintexts. 

C. Efficiencyc of scheme 3 

The advantage of scheme3 lies in a shorter key length 

and small computation cost, we give a detailed analysis below. 

Length of public key: the public key is a pair of 

polynomial vectors  ba ˆ,ˆ  in Rk, if â  is shared by all users, 

then it only need to take into consideration of b̂ , and the 

length of public key is knlog2q bits. 

Length of private key: the private key is a polynomial in 

R with constant item 1, and the length of private key is nlog2q 

bits. 

Length of ciphertext: In scheme3, an n bits plaintext is 

encrypted into a ciphertext of 2nlog2q bits. 

Computation cost of encryption: It needs to compute a 

polynomial convolution, then two canonical mapping and 

finally a vector addition on 
n

qZ . Here the computing cost of 

polynomial convolution can be reduced through a fast 

Fourier transformation. And the total computation cost of 

encryption is  nn log
~
 . 

Computation cost of decryption: It needs to compute the 

inverse of canonical mapping, namely to solve a linear 

equation set on qZ , then compute a polynomial multiplication 

and one canonical mapping, finally a vector subtraction. And 

the total computation cost of encryption is  nn log
~
 . 

Homomorphic addition: The addition of two ciphertexts 

is simply vector addition by coordinate wise, the computation 

cost is  n
~

. After an addition, the length of ciphertext is not 

increased, and accordingly the computation cost of decryption 

remains the same. 

Homomorphic multiplication: When multiplying two 

ciphertexts, it needs to directly compute vector multiplication 

on 
n

qZ  coordinate-wise, the computing cost is  nn log
~
 . 

After one multiplication, the length of ciphertext is increased 

to 4nlog2q bits, namely doubled. In decryption phase, for each 

ciphertext element, it needs to solve a linear equation set, then 

compute one polynomial multiplication and one subtraction, 

the total computation cost of decryption is  2~
n . 

To sum up, we confirm that comparing with scheme 2, 

scheme 3 has an obvious advantage in efficiency. The key 

length and computation cost is controlled in a rational bound, 

and, after one multiplication, the ciphertext vector still 

remains two elements, though there is an increase in length. 

We believe that scheme 3 is a practical homomorphic 

encryption scheme. 

V. CONCLUSION 

This paper provides a somewhat homomorphic multi-bit 

encryption scheme that is basing on RLWE assumption. We 
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use canonical mapping to change polynomial computation into 

vector operation that is coordinate-wise. Due to this technique, 

the computation cost of our scheme is very limited, and the 

key length is short. We give a security proof to show that the 

scheme is CPA secure on condition that RLWE assumption 

holds. 

Homomorphic encryption scheme is a new hot point in 

cryptography. There has been abundant works in recent years 

focusing on scheme construction and application, and new 

methods and new ideas have appeared continuously. However 

there still leaves a lot of problems to solve in this area, both in 

theoretical and practical.  

Aiming on performance improvement, we use a new 

technique to construct scheme, and our scheme is practical due 

to its computation cost and key length, while because 

homomorphic multiplication can cause an increase in 

ciphertext length, the scheme is somewhat but not fully 

homomorphic. However, scheme 3 in this paper can be a 

potential somewhat homomorphic encryption scheme. Further 

studies on controlling ciphertext length and ultimately 

constructing fully homomorphic encryption schemes will be 

our target in the future. 
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