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Abstract— Load forecasting allows for the utilities to plan 

their operations to serve their customers with more 

reliable and economical electric power. With the 

developments in computer and information technology 

new techniques to accurately forecast power system 

loading are emerging. This research culminates in 

development of modified algorithms for short-term load 

forecasting (STLF) of a utility grade power system. The 

three proposed methods include: Modified Recursive Least 

Squares parameter estimation for online load foresting, 

Modified Kalman Filter based parameter estimation for 

online load forecast, and Artificial Neural Fuzzy 

Interference System approach. The load forecast 

performance of each new algorithm is validated with past 

utility data. The method performance is compared, and 

conclusions are drawn. 
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Squares, Kalman Filter, Parameter Estimation, Artificial 

Neural Fuzzy Interference System, ANFIS 

I.  INTRODUCTION  

Load forecasts allow utilities to plan their operations such 

as unit commitment and generator maintenance beforehand, 

and thus, serve their customers with more reliable and more 

economically efficient electric power. The geographical 

location, population, social factors, and weather factors have 

different effects on the systems and therefore these systems 

have different types of load patterns [1].  The financial 

consequences for forecast errors are so significant that even a 

small fraction reduction in the forecast error can cause major 

financial benefits for the utility [2].  

Load forecasting remains a difficult task to master. The 

difficulty comes initially because the system loads often 

display periodicity and seasonality at multiple time scales. 

Another reason is that there are many outside variables, such 

as weather conditions that should be considered in a load 

model. Research to this point has concluded that there is not a 

single forecasting model superior for all power systems [2-3]. 

The service areas have different geographic, climatic, social, 

economic, and customer characteristics, thus they are different 

in terms of loading.   

The methods used for Short Term Load Forecasting 

(STLF) can be broadly classified into two main categories: 

statistical and artificial intelligence (AI) approaches. The 

statistical methods are often seen as attractive alternatives 

because some physical interpretation can be attached to their 

components.  Most of the criticisms have been directed toward 

their limited abilities to handle non-linearity [1]. Some of the 

existing and statistical based STLF methods include: The 

Similar-Day approach [4], Exponential smoothing [5], 

Autoregressive (AR) model and Autoregressive moving 

average [6-7].  

AI methods are generally flexible and can handle non-

linearities and complexities within the system. Along with 

their promising performance, their popularity seems to be 

greatly due to the fact that no prior load modeling experience 

is necessary to obtain reasonably accurate forecasts [1-3]. 

These methods automatically organize the input data to find 

the relationship between it and the output data, without any 

human input; this can be both the advantage and the weakness 

of these systems.  Some of the existing AI- based methods for 

STLF include Artificial Neural Networks (ANNs) [2,8,9], 

Fuzzy logic [10,11], Expert systems [12], and Support Vector 

Machines [13,14].  

The motivation for this research is to use existing utility 

data and weather data to create new load forecasting 

algorithms for STLF of a large scale utility power system. The 

assumption for the research is that one can create fairly 

accurate models without in-depth knowledge of the power 

system. This paper describes evaluation of three modified 

techniques for STLF. The proposed techniques are validated 

using historical load and weather data for a large power 

system in the southeastern United States. The method 

outcomes are compared to the actual values on 24-h and 5-day 

time spans to evaluate their performance in terms of error 

during all four seasons.  

This paper is organized as follows: Section II describes the 

proposed new methods for STLF. The proposed new methods 

on A and B utilize linear load model and moving averages of 

load and temperature data for creating load forecasts. The 

proposed method in C uses an ANFIS-network with moving 

average load and temperature values to forecast the system 
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loading. Section III presents the information about the case 

study used to evaluate the three proposed new methods. 

Section IV draws results from the case study and compares the 

method performances against each other, this section is 

followed by the conclus11ions in Section IV. 

II. PROPOSED NEW TECHNIQUES FOR POWER SYSTEM 

STLF 

A. Modified Recursive Least Squares Method 

In a linear load model, the system load is represented as a 
function of explanatory weather and non-weather related 
variables, where the load forecast is simply a summation of the 
explanatory variables multiplied by their estimated coefficients 
[1]. Mathematically, the system load at time t can be written in 

                       
   , (1) 

where y(t) represents the load at time t, [x1(t)…xn(t)] are 

weather and non-weather related-variables determined in the 

load forecast model. The parameter r(t) is the unknown 

portion of the load at time t.  The variables [a0…an] are 

regression parameters relating the load to the explanatory 

variables.  In the proposed model, the residual load will not be 

considered; therefore, the output y(t) can be written as a vector 

multiplication 

                     

  

  

 
  

 . (2) 

If a load model is accurate, mathematical estimation tools 

can be used to find the regression parameters. In this research, 

Recursive Least Squares (RLS) method is proposed to be used 

for online load forecasts.   

According to Gauss’ principle, the unknown parameters 

should be chosen in a way that: “the sum of the squares of the 

differences between the observed values and the computed 

values multiplied by the numbers that measure the degree of 

precision, is a minimum” [15].  The Least Squares (LS) 

parameter estimation method can be written in a fairly simple 

mathematical form for systems. With the observed variable 

y(t), along with the parameters [a0…an] and the known 

functions and variables [x1(t)…xn(t)], regressor and the 

parameter vectors are: 

                                     ] 

                        

The regressors and the observations are derived from the 
existing data for load forecast, for each time t.  The parameter 
values are determined in a way that the LS cost function V is 
minimized. The LS cost function becomes 

    
 

 
                  

   . (3) 

Since there are tf number of measurements, one can write 

the observations, Y, errors, E, and regressors, Φ, in vector and 

matrix form 

                 

                 

    
     

 
      

 , 

where the residual ε(t) and the cost function V are defined by 

                             , (4) 

and 

    
 

 
       

  

   

 

 
     

 

 
    . (5) 

Reference [15] suggests that loss function V is minimum 
for parameters of θ when 

         . (6) 

A unique and minimum solution for the parameters can be 

found when the matrix ΦTΦ is nonsingular; therefore the 

parameter vector becomes 

                  . (7) 

 The standard multiple linear regression method 

utilizing LS has found its greatest application in off-line 

forecasting [1]. However, the observations for the load profile 

and other external values are obtained sequentially in real 

time; therefore it is necessary for one to also consider the 

latest information in parameter computations.  In order to save 

computational time and effort, it is desirable to make 

computations recursive. Computations of the LS estimate can 

be organized in a way that the results found at previous time 

step t-1, can be used to obtain the estimates at current time t 

[15].  According to [15] one can rearrange the P-1(t) matrix to 

form Recursive Least Squares (RLS) Algorithm. The RLS is 

used for the proposed algorithm.    

The proposed new method also takes in account the fact 

that power system parameters are time-variant. To account for 

the non-linearity, a modification to the RLS algorithm was 

made in the proposed model. The modifications accounts for 

the possible changes in system dynamics by weighing recent 

values more heavily when calculating the parameter updates 

[15].  The parameter λ is introduced into the cost function (3), 

and the updated cost function becomes 

    
 

 
                       

   . (8) 

where λ is defined such that 0<λ≤1, and is called the forgetting 

factor. The proposed modified RLS SLTF algorithm assumes 

that the forgetting factor would be close to unity (λ =0.99), as 

the changes in power system dynamics are often fairly slow. 

Based on the updated cost function, the most recent data is 
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weighted by unity, and n number of time steps old data is 

weighted by the factor of λn. The RLS algorithm can, 

therefore, be updated in such a way that exponential forgetting 

is taken into account 

                                   , (9) 

                                     , (10) 

                        

                    
  

           . (11) 

The proposed RLS STLF model uses the past load data 

along with weather data as its inputs to forecast the load at a 

given time. The RLS algorithm is applied and the past loads, 

along with past and current weather data represent the linear 

combination of the load at a given time t. In the proposed 

model, the values for parameters are different for each hour of 

the day.  Along with the actual past values for the load data, 

the proposed model utilized moving average vectors for past 

loads and temperatures. In the proposed model, the moving 

average calculates the average load and temperature values on 

the same hour as the forecast on past five days; these are used 

as model inputs. The model also considers the deviation of 

that actual temperature value from the moving average value, 

and uses the deviation values as one of its inputs.  

The proposed new method also takes into account the fact 

that the temperature relationship with the load may not be 

simply linear or quadratic. A combination of both was used in 

the model to better estimate the relationship; the parameter 

multiplier was estimated for the temperature deviation and for 

its square. Different numbers of total inputs and the portion for 

each three types of inputs were considered for the RLS 

algorithm and their performance was evaluated, the best 

performance model was then selected to be compared against 

the other proposed STLF models. The best performance model 

utilizes load data moving average, base load, past load from 

one hour ago, past load from a day ago, actual temperature, 

the temperature deviation, the square of temperature deviation, 

temperature from one day ago, and humidity index as some of 

its inputs. The proposed new RLS approach differs from the 

existing regression based approaches by the fact that it is 

geared toward on-line load forecasts because of the continuous 

parameter updating. The introduction of the forgetting factor is 

also an important step towards the direction of on-line load 

forecasting. The proposed new algorithm also differs by using 

the moving averages of load and weather as its inputs.   

B. Modified Kalman Filter Method 

In most processes, as measurements are taken over time, 

they tend to have some imperfections, such as noise and other 

measurement errors. Kalman Filters are used to produce 

estimates that neglect the noise and yield better accuracy. In 

the case of load-forecasting, the residual load along with 

measurement errors can be thought of as the system noise that 

the Kalman Filter (KF) attempts to neglect. The recursive 

form of a KF is easy to implement in software [16]. The 

proposed KF model uses a time-varying state-space model to 

describe the load demand on an hourly basis. The KF is used 

to estimate and update the optimal load forecast parameters for 

each hour of the day. The proposed STLF model assigns each 

hour of a day with its own parameter model, and the 

parameters are updated daily.  

To derive the KF model for STLF, we have to assume a 

state-space model  

                     , (12) 

                   . (13) 

The parameters and the variables of (12) and (13) are presented 
in Table 1.  

TABLE I.  VARIABLES FOR STATE-SPACE SYSTEM MODEL 

KF Parameter Variables and Explanations 

Variable Size Description 

x(k) nx1 State Vector 

A(k) nxn 
State-Transition 

Matrix 

z(k) 1x1 
Measurement 

Scalar 

C(k) 1xn 
Time-varying 

Output Vector 

w(k) nx1 
System Error 

Vector 

v(k) 1xn 
Measurement 

Error Vector 

The proposed model assumes that w(k) and v(k) are white 

noise vectors, which have zero mean and no time correlation, 

along with known covariance matrices Q1 and Q2. In the 

model Q1 is set to a positive semi-definite matrix, and Q2 is set 

to a positive definite matrix as suggested by [1,17,18]. The 

matrices are in the following form 

               , 

               . 

KF-model for parameter estimation is given in [1] in a 

form of three recursive update equations (14), (15), and (16). 

In the KF model, the initial values for the parameters of vector 

x(k)|k=0, as well as for its error covariance matrix P(k)|k=0, are 

defined for the recursive algorithm. With data from the 

system, the proposed model first uses the LS method with past 

system data to find initial values for the parameter vector x(0) 

and for the error covariance matrix P(0). After having 

obtained the initial estimates, the recursive KF-calculations 

can be performed by 

                                       
  (14) 

                                        (15) 

                             

                         
     .  (16) 
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where K(k) is the Kalman gain matrix, x(k+1) is the vector for 

new state-estimates for the parameter vector, and P(k+1) is the 

updated error covariance matrix [1]. The proposed method 

uses this process to update the parameter estimates each time a 

set of new values becomes available. 

The proposed new KF STLF model uses weather and load-

related information to formulate the time-varying discrete-

time (DT) dynamic system in state-space form, which is 

suitable for the KF-approach.  In the proposed method, the 

state-transition matrix A(k) is assigned as a constant n x n 

identity matrix, whereas covariance matrices Q1 and Q2 are 

constant parameter matrices. In the proposed system, the 

matrices Q1 and Q2 are chosen scalars with values of unity. 

These covariance matrices are based on the actual 

characteristics of the system and measurement noises; they 

would be chosen differently if there were knowledge of the 

sensor accuracy of the load measurements obtained. Since we 

do not have this data, the covariance matrices were chosen to 

values of unity.  

The parameter state vector x(k) estimates a finite, and the 

observation vector C(k) is the vector containing the load and 

weather data. The observation vector relates the data to the 

parameter state-vector and produces the observation scalar 

output z (k) for time becomes 

               (17) 

The KF STLF input model is very similar to the one for 

the RLS system. Proposed KF method also uses the moving 

window method for the load and weather data to produce the 

load forecast for the given time.  Past load and weather are 

modeled the same exact way, including moving average loads 

and temperature deviations. The total input number and 

number of each type of the inputs was varied to evaluate 

which one of the input arrangements produces the most 

accurate outputs. The proposed model has a different 

parameter set for each of hour of the day, just like the 

proposed RLS algorithm.  The inputs of the best input model 

of the proposed KF algorithm include: Base load, moving 

average of the load, load one day ago, load two days ago, 

moving average temperature, temperature deviation and its 

square, current temperature, temperature one day ago, 

temperature two days ago, and various values of the humidity 

index.  

C. Artificial Neural Fuzzy Interference System Method 

AI-based methods provide perhaps the most interesting 

and promising approach to load forecasting problems. This is 

mainly because of their straightforward implementation and 

reasonably good performance, as suggested by [2]. The AI-

based method proposed in this research utilizes Artificial 

Neural Fuzzy Interference System (ANFIS) for load 

forecasting. The ANFIS model combines features of an ANN 

and fuzzy system to create a model that can explain past load 

data and predict future loads.  

 

 

 

 

 

Figure 1.  Five-layer ANFIS network with five inputs and one output. 

The proposed ANFIS system uses past values of load and 

weather parameters inputs and outputs to generate the model. 

An ANFIS combines the low-level computation power of a 

neural network with the high-level reasoning capability of a 

fuzzy inference system.  The architecture of the ANFIS model 

utilized for the proposed STLF model is shown in Fig. 1. The 

layout of the architecture of the ANFIS consists of five layers 

of calculations and decision-making between the input and the 

output.  

The first layer consists of two nodes for each of the five 

inputs which represent the membership functions 

{Ai,Bi,Ci,Di,Ei} associated with those nodes.  The forecast 

model uses two membership functions for each node, therefore 

i = 0, or i = 1.  The membership function specifies the degree 

to which the given input satisfies the quantifier Ai [19].  In the 

proposed architecture, bell-shaped membership functions are 

utilized.  The mathematical model for the membership 

functions can be describe as follows: the output of the layer 

(O1
i) of the membership function is 

   
     

     
 

    
    
  

 
 
   

  (18) 

where x is the input and {ai, bi, ci} is a set of parameter to be 

estimated for each membership function.   

The second layer of the architecture consists of nodes that 

multiply the incoming signals from the first layer outputs and 

send the products wi out: 

       
          

     (19) 

for i= [0,1…, n] where each node output wi is multiplication 

of two membership functions, and represents the firing 
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strength of the rule [19].  Since there are five inputs and each 

of the five inputs has two membership functions, there are 

total of 40 multiplication nodes in this layer. 

 The third layer nodes calculate the ratio of the rule’s firing 

strength to the sum of all rules’ firing strengths.  The third 

layer’s output is conveniently referred to as normalized firing 

strength [19].  The mathematical representation for each of the 

40 normalized firing strengths can be written  

     
  

   
  
   

 (20) 

The nodes on the fourth layer utilize parameter equations 

that correspond to the membership functions for each of the 

normalized firing strengths.  The fourth node output function 

is 

   
                           (21) 

where wi is the firing strength associated with the ith 

membership function of the inputs xn and xm.  The parameter 

set {pi, qi, ri} is the parameter set for each of the 40 nodes of 

the proposed model on this layer. 

The fifth and the final level of the ANFIS architecture has 

only one node; this node combines all the outputs of the fourth 

level and produces a single output, which is the overall output 

of the ANFIS.  Mathematically the overall output O5 is the 

summation of all the outputs of layer four: 

       
   

    (22) 

The architecture in Fig. 1 illustrates the connections between 

each level.  The architecture as described can provide a 

platform suitable for STLF; however the ANFIS needs enough 

data and to be trained in order to produce accurate estimates 

for future loads.   

 The key to produce accurate estimates for future 

values with an ANFIS load-forecasting model requires past 

information, including load data and external parameters, such 

as weather, related to the past load values.  The ANFIS 

network is then trained to use the input data to produce the 

related outputs.  The training method that is utilized for the 

proposed forecasting model is a hybrid training algorithm; it 

uses forward and back propagation to estimate values for the 

parameters.  

Training process uses a lot of computational power 

because of the number of parameters to be estimated and the 

utilization of the LS algorithm.  In order to speed up the 

process, the number of inputs was kept low in the proposed 

model. The relationship between the inputs and the 

computational time for the model training depends on the 

parameters to be estimated.  In a large system with many 

inputs, the computation time can be quite large.  For this 

reason, proposed system model is not updated and trained 

hourly, unlike the other two models. The model can be still 

used in on-line forecasting, instead of being updated hourly, it 

is proposed that the parameters could be updated for example 

weekly, in which case the computational time will not be a 

problem.  

The proposed new ANFIS algorithm uses the past load 

data along with past and current weather data to construct a 

network that is used for STLFs. The number of training 

repeats was kept low to reduce computational time and to 

avoid the over-fitting phenomenon. The ANFIS network was 

trained with the collected load and weather data between June 

2004 – June 2005, and the forecasts were performed with the 

data for the following year. The proposed model uses the day 

of the week, and time of the day as its inputs. The other model 

inputs include the moving average for load, the moving mean 

for temperature, the previous day hourly load, load from two 

days ago, the current temperature, and humidity.  

III. METHOD VALIDATION CASE STUDY 

The data used in this research is the hourly load data of a 

large utility grade power system during a 24-month time span 

(June 1st, 2004 - June 1st, 2006). At first, a statistical load data 

study was performed with the corresponding weather 

parameters, mainly to get an idea of variations in loading. 

Table II describes the data values and their extremes 

throughout the time span.  

TABLE II.  STATISTICAL LOAD AND WEATHER DATA FOR THE STUDIED 

POWER SYSTEM 

Power System Load and Weather Data Statistical Analysis 

DATA Average 
Standard 

Deviation 
Minimum Maximum 

Load  (MW) 19711.1 3228.5 12738.5 31531.1 

Temperature (F) 61.49 16.21 16 98 

Dew Point (F) 50.17 16.65 -5 77 

 

The initial statistical load study was also performed to 

compare different average daily load patterns for the four 

seasons of a year. Only business days were included in the 

study, because loading patterns are quite a bit different on the 

weekend days. Fig. 2 shows the hourly load averages for 

working days (Monday through Friday) for the months of 

January, April, July, and October. Similarly, Fig. 3 was 

constructed to demonstrate the hourly temperature averages 

for working days during the same months.  

Based on Fig. 2 and Fig. 3 we could see that the shapes of 

the temperature and load profiles for a summer day were 

somewhat similar. At night, when temperatures were the 

lower, the loads were also the lower, but during afternoon 

hours of high temperatures, the consumption was far greater. 

We observed also that the consumption and temperature 

curves for fall and spring were relatively similar.  Since the 

weather is milder than in the summer, the consumption 

patterns differ from the shapes of the temperature profiles. On 

the other hand, the winter consumption profile is different 

from any of the other profiles: The peak temperatures in the 
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afternoon actually seem to cause a sag in consumption. To 

explain this, the actual temperature values of the winter data 

were examined. The cold temperatures at night time would 

require use of more heating loads, whereas the mild 

temperatures during the afternoon would not require as much 

heating, therefore causing less loading to the system. Based on 

this information, we concluded that the weather effects were 

significantly different based on the season for the studied 

power system. The literature references [1,3,10,19] also 

reached the same conclusion.  

 

Figure 2.  Average hourly loading. 

 

Figure 3.  Average Hourly Temperature. 

During the initial statistical analysis, the average hourly 

loading on each of the weekdays was examined. The loading 

patterns are shown in Fig 4. By examining the graph, we were 

able to draw conclusions that the hourly loading on the 

working days is quite consistent. On the other hand, weekend 

day loading patterns differ from the working days. Thus, 

decision was made to only consider the data from the working 

days in the forecast models at this initial stage of research due 

to the relatively small sample size of data. 

 

Figure 4.  Average weekday hourly loading 

The weather conditions, particularly the temperature, have 

a high effect for STLF, as shown previously. Humidity is also 

often considered in southern regions [1,2], and since the power 

system is at a relatively southern location, the humidity is 

included considered in the proposed forecast models.  

According to [1], a good method for taking humidity into 

account is using the humidity factor H (t), which is calculated 

from the dry bulb temperature and dew-point (DP) 

temperatures at time t  

                                , (23) 

where TD is the dry bulb temperature in ˚C and Tp is the DP 

temperature in ˚C, at time t. Also, according to [1], humidity 

effects become negligible at temperatures less than 25 ˚C; 

therefore, H(t) in the proposed forecast models is set to zero 

for temperatures lower than that.  

The proposed STLF models are evaluated by their 

performance in forecasts for 24-hours-ahead, as well as for 5-

days-ahead.  The outputs of different models are compared to 

the actual recorded load, and the performance is evaluated by 

statistical Mean of Absolute Percentage Error (MAPE) and 

Standard Deviation of Absolute Percent Error (SDAPE).  

These methods are generally the statistical methods used in 

load forecasting studies to evaluate forecasting performance 

[2]. The presented solutions for the load models are not 

optimal; however the selected ones show relatively good 

forecasting performance.  As the error becomes smaller, the 

load model becomes more acceptable for the purposes of load 

forecasting.   

       
 

 
  

                       

          
  

    (24) 

        
 

 
   

                       

          
      

 

  
   (25) 

IV. RESULTS AND ANALYSIS 

Now that the theoretical background and information about 

the power system have been presented, it is important to 

validate of the performance of the each proposed STLF model, 

and compare their performances.  The selected input models 

with the best tested performances for each algorithm were 

used, and MATLAB® is used to generate forecasts for all four 

seasons.  The performance was evaluated statistically in terms 

of the MAPE and SDAPE for both 24-hour and five-day time-

intervals. The results are described in Tables III, IV, and V.  

TABLE III.  SEASONAL MAPE FOR PROPOSED STLF ALGORITHMS 

Seasonal MAPE for Proposed STLF Algorithms 

STLF Algorithm 
MAPE 

Summer 

MAPE 

Fall 

MAPE 

Winter 

MAPE 

Spring 

RLS 24h 1.33% 2.86% 4.76% 2.09% 

KF 24h 3.46% 2.64% 3.78% 2.60% 
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Seasonal MAPE for Proposed STLF Algorithms 

STLF Algorithm 
MAPE 

Summer 

MAPE 

Fall 

MAPE 

Winter 

MAPE 

Spring 

ANFIS 24h 2.60% 2.43% 2.65% 2.13% 

RLS 5-day 7.83% 7.62% 9.74% 5.01% 

KF 5-day 2.85% 5.87% 4.23% 4.58% 

ANFIS 5-day 2.98% 5.12% 4.08% 2.92% 

 

 

TABLE IV.  SEASONAL SDAPE FOR PROPOSED STLF ALGORITHMS 

Seasonal SDAPE for Proposed STLF Algorithms 

STLF Algorithm 
SDAPE 

Summer 

SDAPE 

Fall 

SDAPE 

Winter 

SDAPE 

Spring 

RLS 24h 1.87% 6.95% 6.97% 1.29% 

KF 24h 5.06% 4.57% 10.58% 4.38% 

ANFIS 24h 1.90% 3.32% 5.16% 3.61% 

RLS 5-day 29.41% 36.76% 23.35% 15.74% 

KF 5-day 21.29% 42.02% 13.46% 35.31% 

ANFIS 5-day 6.50% 26.22% 13.08% 5.05% 

TABLE V.  AVERAGE MAPE FOR PROPOSED ALGORITHMS 

Average MAPE for Proposed STLF Algorithms 

STLF Algorithm 

MAPE 

24h 

Average 

MAPE  

5-day 

Average 

Increase in MAPE 

from 24h to 5-day 

RLS 24h 1.33% 2.86% 4.76% 

KF 24h 3.46% 2.64% 3.78% 

ANFIS 24h 2.60% 2.43% 2.65% 

 

By examining the tables for the two statistical methods: 

One can see that the RLS performs relatively well for the short 

24-hour time-scale. The KF-approach becomes effective for 

the 5-day time-scale; the average error is less than 4.5% which 

is a total increase of only about 40.39% from the 24-hour 

average MAPE value. The error appears to accumulate on the 

RLS process, wherein the MAPE value worsens significantly, 

173.62%, when the time-window is expanded to five days for 

the chosen input models. There are seasonal variations in the 

performance of the models as well; on average, all three 

methods seem to perform the best in summer and spring, but 

the performance in fall and winter does not appear to be 

optimal for any of the models.  

The performance of the AI-based load forecasting method 

seems to be better than the performances of both statistical 

methods. The averages for the MAPE values in both the 24-

hour and five-day timeframes are lower than the MAPE 

averages of the forecasts with the statistical methods.  Also, by 

determining their seasonal variances in performance, the 

ANFIS approach seems to be the most consistent throughout 

the whole year.  The average hourly error with ANFIS 

approach for the five-day forecast period is well under 4%.  

The forecasted load profiles are illustrated for all four seasons 

in comparison to each other in Fig. 5 through Fig.8. 

The methods were also compared against existing moving 

average model. The moving average model calculates the 

average of five previous days load values to get a prediction of 

the load value, temperature is not considered. The average 

MAPE for whole year on a 24h prediction interval was 7.60%, 

to which all the proposed methods were able to provide 

improvements for. The error percentage for the moving 

average model is also expected to increase as the time interval 

increases.   

 

Figure 5.  STLF Method Comparison in Summer 

 

Figure 6.  STLF Method Comparison in Fall 
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Figure 7.  STLF Method Comparison in Winter 

 

Figure 8.  STLF Method Comparison in Spring 

Overall, it appears the ANFIS-algorithm provides the most 

promise for accurate STLF in examined time-windows for the 

studied power system. The RLS appears to be good method 

for 24-hour forecasts, but the performance outside the 24-hour 

time-range worsens significantly.  The KF-algorithm seems to 

perform relatively well for 24-hour forecasting, as well as well 

for the expanded time-range.    

V. CONCLUSIONS 

In this article, three methods for STLF were derived, and 

validated with real utility data. The performance of the 

forecasting algorithms varied to some degree. The proposed 

ANFIS algorithm yielded to most consistent results in the 

study. Proposed ANFIS method had also generally the lowest 

MAPE, while it also had the least amount of parameters. 

ANFIS seemed to be the method that also maintained its 

effectiveness over the longer time periods. The RLS algorithm 

performed the poorest. When the forecasting time span 

exceeded 24 hours, the error for the RLS started to 

accumulate. The proposed KF-approach performed relatively 

well.  The statistical error associated with it was significantly 

lower than with RLS for most of the simulated cases. The KF 

appeared to handle the seasonality better than the RLS.  

Although, the ANFIS approach performed relatively well 

compared to the other methods examined in the paper; there 

were still a significant amount of error associated with it. One 

reason for the error is that the system covers a large 

geographical area, and the weather information is only 

accurate for a small portion of it. By observing the data 

provided, the presence of some unpredictable load behavior is 

evident. The inputs of the forecast models lack the ability to 

account for large plant close-downs, major social events, and 

other occasions which could alter the system’s load from time 

to time.  

As a conclusion, the algorithms derived are capable predict 

and forecast the load for an electric power system. The 

algorithms however need further validation and development 

in order to be used in real life utility settings. The further 

development and validation with data from different power 

systems remains as the goal of future work.   
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