
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 118

 An Efficient Graph-Coloring Algorithm for

Processor Allocation

Mohammed Hasan Mahafzah

Faculty of Information Technology, Computer Science Department

Philadelphia University

Amman, 19392, Jordan

E-mail: mmahafzah@philadelphia.edu.jo

Abstract - This paper develops an efficient exact graph-coloring

algorithm based on Maximum Independent Set (MIS) for allocating

processors in distributed systems. This technique represents the

allocated processors in specific time in a fully connected graph and

prevents each processor in multiprocessor system to be assigned to

more than one process at a time. This research uses a sequential

technique to distribute processes among processors. Moreover, the

proposed method has been constructed by modifying the FMIS

algorithm. The proposed algorithm has been programmed in Visual

C++ and implemented on an Intel core i7. The experiments show that

the proposed algorithm gets better performance in terms of CPU

utilization, and minimum time for of graph coloring, comparing with

the latest FMIS algorithm. The proposed algorithm can be developed

to detect defected processor in the system.

Keywords: Distributed System, Graph Coloring, CPU Scheduling,

Multiprocessor System, CPU utilization, Fully Connected Graph,

Processor Allocation.

 I INTRODUCTION

The configuration of a distributed computing system

involves a set of cooperating processors communicating over

the communication links. A distributed program running in a

distributed computing system consists of several modules that

need to be allocated to the processors and inter-communicate

through the links for the completion of program execution. To

improve the performance of a distributed computing system,

several issues arise such as the minimization of execution and

communication cost [1, 2, 3], the maximization performance

of multiprocessors through maximization of CPU utilization

[4]. Meanwhile, resource constraints may be imposed by

memory size of processors and capacity of communication

links.

In this paper, a graph-coloring algorithm based on (FMIS)

is proposed to be used in the distributed system to build a

multiprocessor allocation system, which capable of allocating

one process at a time for each idle processor. A sequential

technique for allocating processes is used to distribute

processes among processors. The basic idea of the proposed

algorithm is to select a node with maximum degree first, based

on the previous garph-coloring alorithm FMIS [8]. The

proposed algorithm has been constructed by using some

modifications of the FMIS algroithm. The experimental results

reveal that the proposed algorithm produces better

performance in terms of CPU utilization, and minimum time

for coloring the graph, and produces minimum number of

colors needed to color any given conncted garph by finding

the number of Maximum Independet Sets [MIS]. The

algorithm takes a polynomial time complexity.

During processes allocation, Graph Coloring technique will

represent the busy processor at a specified time slot by

generating a full directed graph, which in result, busy

processors will be mapped in the graph with different colors

for each.

This paper will be able to answer the following questions:

Which processors are allocated? Which processors are idle?

What is the number of allocated processors in specific time?

What is the number of idle processors in specific time? What

is the total number of allocated processors? What is the total

number of idle processors?

The rest of the paper is orgainzed as follows: Section-2

presents relevant definitions and specifications on Graph

Coloring. Sections-3 presents relevant background

information on Multiprocessors Allocation System. Section-4

presents the proposed Coloring-Graph algoithm. Section-5

reports on experment results. Finally, Section-6 discusses

conclusions and future work.

 II GRAPH COLORING

An undirected garph G = (V, E) is a pair of finite sets,

where V contains the vertices of the graph and the set E

contains its distinct unordered edges [5, 6]. Two vertices of a

graph are considered adjacent if an edge exists between them.

An independent set (I) is a subset of vertices in G such that no

two vertices in I are adjacent. The Maximum Independent Set

(MIS) of G is an I with maximum cardinality among all I sets

of G [5, 6]. The MIS problem is to find an I with the largest

number of vertices in G. The problem of finding MIS in a

given graph is very important in graph coloring and process

allocation in a distributed susyem [7].

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 119

A Coloring of a graph is an assignment of positive

integers called colors to its vertices such that no two adjacent

vertices receive the same color. Finding a coloring of a graph

that minimizes the number of colors is an NP-hard problem.

However, this paper proposes an efficient exact Graph-

Coloring algorithm based on finding the Maximum

Independent Set (MIS), and modifying the existing FMIS

algorithm [8], for getting the number of allocated processors

and the number of idle processors in a distributed system.

III MULTIPROCESSOR ALLOCATION SYSTEM

Each processor in a multiprocessor system should be allocated

only one process at time (assuming a fixed time slot “quantum

time technique”). Normally, each processor has its own local

scheduling (assuming that a processor has multiple processes),

regardless to what other processors are doing. To solve this

problem, the proposed graph coloring is used to represent the

allocated processors in specfic time for any given fully

connected graph. However, the sequencial techninqe for

allocating processes is used.

This paper aims to get a maximum performance of a

multiprocessor system by maximizing CPU utilization, which

is maximizing the number of CPU cycles actually executed on

behalf of user jobs per hour of real time. Maximum CPU

utilization is another way of saying that CPU idle time is

almost to be very small. When in doubt, make sure that every

CPU has something to do.

 Figure-1 shows an example of a multiprocessors system

with maximum CPU utilization, and may be overloaded.

Figure-2 shows an example of an idle multiprocessors system

with minimum CPU utilization. The proposed algorithm

produces better performance in terms of CPU utilization and

minimum time for graph coloring.

Figure-1: Multiprocessor system with maximum CPU utilization.

Figure-2: Multiprocessor system with minimum CPU utilization.

IV THE PROPOSED ALGORITHM

The proposed algorithm is based on the latest algorithm for

finding Maximum Independent Sets (FMIS) [8]. This research

modifies the existing FMIS algorithm for getting the number

of allocated processors and the number of idle processors in a

distributed system. The main modifications of the proposed

algorithm consists of three major steps: selecting the node

that has the maximum degree first among all nodes of a given

graph; add the selected node to approximated maximum

independent set; delete the selected node and its neighbors

from the graph. Repeat, Graph-Coloring procedure until the

degree of the remaining graph nodes becomes zero [9].

 Figure-3 represents the proposed algorithm; this algorithm

will be used to find the MIS sets, for finding the number of

colors in any given connected graph, and compared to the

FMIS algorithm in terms of CPU execution time and number

of colors that generated from applying the two algorithms.

Results of implementing the proposed algorithm will be

shown in details in the experiments section.

Figure-3: The proposed Graph-Coloring algorithm.

Procedure Graph-Coloring(G, V)

 Input: G(V, E)

 Output: MIS

 Global: int max_ind_set[];

 Char visite_node[];

Select Max-Node;

Get_ind_set()

 /* Function for getting the independent sets*/

{

 While degree_node(G) < > 0

 /* Return zero, if the remaining nodes in G of degree zero*/

 {

 v:= select_node(G)

 /* Find the node from graph G that has the maximum degree*/

 G:= G-v-neighbors(v);

 max_ind_set = max_ind_set U {v}

}

};

X1

Processes

P0

P1

P2

P3

Processors

Processes
Processors

P0

P1

P2

P3

X1

X2

X3

X4

X5

X6

X7

X8

X9

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 120

It is easy to analyze the proposed algorithm in terms of

complexity time. The while loop actually takes O(n), also the

select-node function takes O(n). Therefore, the complexity

time of the entire proposed Graph-Coloring algorithm is O(n2).

To understand the proposed algorithm, Figure-4 shows an

example of implementing the proposed algorithm on graph G,

which consists of five vertices.

 Figure-4: G = (V, E)

Step-1:
Select the node that has maximum degree first and put it in

max_ind_set[], as you see there is only one node, which is

node-1, that satisfied this condition. Therefore, the MIS is {1}.

Step-2:
Delete the selected node and its neighbors from the graph.

Step-3:

After deleting node-1 and its neighbors, the remaining three

nodes are of degree zero. Therefore, the MIS is {1}.

Step-4:
Delete the Maximum Independent Set nodes from the main

graph, and repeat the algorithm again to find all coloring until

the degree of the remaining graph vertices becomes zero.

Figure-5 shows the colored-graph of graph G after

implementing the proposed algorithm; there are only three

colors needed for the entire graph G. Each of the following

MIS sets represents a color:

● {1} MIS.

● {4, 3}.

● {2, 5}.

Figure-5: The colored-graph of graph G(V,E).

V EXPERIMENTS

This paper reports experimental results that demonstrate

the performance of the proposed algorithm, which has been

programmed in Visual C++, and implemented on an Intel
Core i7. The proposed algorithm will be applied, as an

example, to the scheduling matrix shown in Figure-6. The

matrix consists of eight processors, each of which with six

time slots. The Xs indicate allocated slots, where as the

number of output colors will express the number of allocated

processors in a specific period. Each allocated processor has a

direct communication link to every other allocated processor

in the graph. Moreover, the proposed algorithm provides the

ability to add or to allocate new processors, to allocate new

processes, and to draw the graph coloring for allocated

processors within each specific time slot.

 0 1 2 3 4 5 6 7

 0 X X X X X

1 X X X

2 X X X X

3 X X X X X X X X

4 X X

5

Figure-6: Scheduling matrix for eight processors.

Table-1 shows results of implementing the proposed

algorithm on the scheduling matrix shown in Figure-6. It can

be noticed that the number of allocated CPUs is always equal

to the number of colors in the resulted graph.

Table-1: Analysis for scheduling matrix.

According to previous scheduling matrix in Figure-6, the

following results have been taken after implementing the

proposed algorithm. Figure-7 to Figure-12 shows the number

of allocated processors. However, idle processors are not

appearing in the resulted graph since the number of colors at

each specific time slot represents only the number of allocated

processors. Nevertheless, Table-1 also identifies the set of

allocated processors and the set of idle processors. The ability

of the proposed algorithm of coloring any connected graph

with less time compared with the latest FMIS method is

shown in Table-2 and Table-3.

Time No.

of

Allocated

CPUs

No.

of

Idle

CPU

s

No.

of

Color

Allocated

CPUs

Idle

CPUs

0 5 3 5 {0,1,2,3,4} {5,6,7}

1 3 5 3 {0,1,2} {3,4,5,6,7}

2 4 4 4 {0,1,2,3} {4,5,6,7}

3 8 0 8 {0,1,2,3,4,5,6,7} {}

4 2 6 2 {0,1} {2,3,4,5,6,7}

5 0 8 0 {} {0,1,2,3,4,5,6,7}

5

1 2

3

4

1 2

3

5
4

Time

Slot

Processor

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 121

Figure-7: Graph coloring in time slot-0.

Figure-8: Graph coloring in time slot-1.

Figure-9: Graph coloring in time slot-2.

Figure-10: Graph coloring in time slot-3

.

 Figure-11: Graph coloring in time slot-4.

 Figure-12: Graph coloring in time slot-5.

Table-2 show the average Graph-Coloring time resulted of

running the FMIS algorithm in specific slot time with

different graph densities (0.2, 0.5, 0.8), and different graph

sizes (10, 30, 50, 70, 80, 100, … , 1000). Table-3 show the

average Graph-Coloring time resulted of running the proposed

algorithm in specific slot time with different graph densities

(0.2, 0.5, 0.8), and different graph sizes (10, 30, 50, 70, 80,

100, … , 1000). Table-2 and Table-3 show that the number of

allocated processors is always equal to the number of colors in

the resulted graph.

It can be seen from Table-2 and Table-3 that the

Graph-Coloring time and the CPU run time for the

proposed algorithm is less than the graph-coloring time

and the CPU run time for the FMIS algorithm. Moreover,

the number of colors in the proposed algorithm is also less

than the number of colors in the FMIS algorithm. As a

result, the proposed algorithm gets maximum performance

in terms of CPU utilization, and minimum time for of

graph coloring.

It is also noticed from running the two algorithms that

the execution time of the proposed Graph-Coloring

algorithm is about half of the execution time of the FMIS

algorithm. This is by itself a good contribution of the

proposed Graph-Coloring algorithm.

0

1

2

4

3

0

1
 2

0

1

0

2

4

7

6
5

1

3

1

2
3

0

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 122

No. of

Processors

Graph-

Coloring

Time(sec)

No. of

Allocated

Processors

CPU

Run

Time(sec)

No. of

Colors

10 0 5 0 5

30 0 7 0 7

50 0 9 0 9

70 0 10 0 10

80 0.01 13 0.01 13

100 0.02 16 0.04 16

150 0.04 21 0.15 21

200 0.231 35 0.24 35

500 1.482 66 0.873 66

1000 2.764 77 2.233 77

Table-2: Analysis of the FMIS Graph-Coloring algorithm.

Table-3: Analysis of the Proposed Graph-Coloring algorithm.

CONCLUSIONS AND FUTURE WORKS

This paper presents an efficient graph-coloring algorithm,

based on finding the Maximum Independent Set (MIS).

However, finding the MIS will be used for allocating

processors in distributed systems. The proposed method has

been constructed by modifying the FMIS algorithm. The

proposed algorithm represents the allocated processors in

specific time in a fully connected graph. The experimental

results reveal that the proposed algorithm produces better

performance in terms of CPU utilization, minimum number of

colors, and minimum time for coloring the graph compared

with the latest FMIS algorithm for finding MIS. For further

studies, someone can improve the proposed algorithm to be

able to detect defected processors by monitoring the graph.

ACKNOWLEDGEMENTS

The researcher would like to gratefully acknowledge the
financial support of the Deanship of Scientific Research in
Philadelphia University.

REFERENCES

[1] C.H. Lee, K.G. Shin, “Optimal task assignment in

homogeneous networks”, IEEE Transactions on Parallel and

Distributed Systems, 8 (1997), pp. 119–129.

[2] T.P. Ajith, C.S.R. Murthy, “Optimal task allocation in

distributed systems by graph matching and state space search”,

Journal of Systems and Software, 46 (1999), pp. 59–75.

[3] Ernst, A., Hiang, H., Krishnamoorthy, M., “Mathematical

programming approaches for solving task allocation

problems”, International Proceedings of the 16th National

Conference of Australian Society of Operations Research.,

2001.

[4] Harry F. Jordan, Gita Alaghband, “Fundamentals of

Parallel Processing”, 2003, Pearson Education, Inc.

[5] http://www.nlsda.buaa.edu.cn/~kexn/benchmarks/graph-

benchmarks.htm, “Maximum Independent Set (MIS) and

Minimum Vertex Cover (MVC)”, 2006.

[6] Al-Jaber, Ahmad and Sharieh, Ahmad, “Algorithms

Based on Weight Factors for Maximum Independent Set”,

Dirasat, Volume 27, Number 1, 2000, PP.74-91.

[7] Beigel, Richard, “Finding Independent Sets in Sparse and

GeneralGraphs”, 2006.

http://www.cis.temple.edu.cn/~beigel/papers/mis-soda.htm,

[8] Ahmad Sharieh, Wagdi Al-Rawagefeh, Mohammed H.

Mahafzah, And Ayman Al-Dahamsheh, “An Algorithm for

Finding Maximum Independent Set in a Graph,“ European

Journal of Scientific Research (EJSR), UK, Volume 23,

Number 4, 2008, PP. 586-596.

[9] Johnson, D.S., “Worst-case behavior of graph coloring

algorithm”, Proceedings of the Fifth Southeastern Conference

on Combinations, Graph Theory and Computing, Canada,

1974, PP. 513-528.

No. of

Processors

Graph-

Coloring

Time(sec)

No. of

Allocated

Processors

CPU

Run

Time(sec)

No. of

Colors

10 0 4 0 4

30 0 6 0 6

50 0 8 0 8

70 0 9 0 9

80 0 12 0 12

100 0.01 14 0 14

150 0.02 19 0.04 19

200 0.13 33 0.05 33

500 0.821 59 0.25 59

1000 1.562 70 1.032 70

http://www.nlsda.buaa.edu.cn/~kexn/benchmarks/graph-benchmarks.htm
http://www.nlsda.buaa.edu.cn/~kexn/benchmarks/graph-benchmarks.htm
http://www.cis.temple.edu.cn/~beigel/papers/mis-soda.htm

