
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 57

A Cost-effective Approach for Hybrid Migration to

the Cloud

Doaa M. Shawky

Engineering Mathematics Department

Faculty of Engineering, Cairo University

Giza, Egypt

doaashawky@staff.cu.edu.eg

Abstract—Cloud computing is the latest computing

paradigm that delivers hardware and software resources as

virtualized services. To take full advantages of cloud services,

there is a need to move legacy software systems to the cloud.

Migrating legacy applications to the cloud is a non-trivial task as

it leads to new technical challenges. The main problem in

mapping software applications to cloud services is selecting the

best and most compatible software components to ensure a cost-

effective model. When selecting components to migrate to the

cloud, software engineers must consider many criteria and

complex dependencies among other systems’ components. Thus,

a technique for locating components to be migrated without

actually moving them is needed. To overcome these challenges,

we propose an approach which can be used in the decision-

making process based on a set of measurable factors in the

pricing models of cloud providers. In the presented approach,

coupling among different components of the system is measured.

Then, a proposed cost measuring function is used to choose the

optimal migration scenarios. The approach is applied to a real

enterprise resource planning (ERP) system. Experimental results

show the efficiency, applicability and easy adaptability of the

presented approach.

Keywords- Cloud Computing, Coupling, Hybrid Migration.

I. INTRODUCTION

Cloud computing is the delivery of computing resources on
demand with reduced management effort. It delivers
infrastructure, platform and software as services. These
services are referred to as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS)
respectively [1-4]. In IaaS, a service (e.g., Amazon web
services) is provided to the user. The application interface
accesses the virtual servers and storage hosted by the cloud.
PaaS in the cloud is a set of application or software which is
hosted in the cloud. The users execute the application in the
platforms hosted by the cloud provider through the platform or
application program interface. Finally, SaaS model provides
both hardware and software infrastructure to the user.

Using clouds, users are able to access and deploy
applications from anywhere in the world at competitive costs
depending on users QoS (Quality of Service) requirements. In
addition, by using clouds, IT companies remove the low level
task of setting up basic hardware and software infrastructures
and thus, they can focus on innovation and creation of business

values [1, 2]. Moreover, clouds are considered a cheap
alternative to supercomputers and specialized clusters, and a
more reliable platform than grids. Another benefit of using
clouds is their ability to scale up immediately and temporarily
according to users’ demands [3].

Cloud computing systems have some essential
characteristics [1, 4]:

 On-demand self-service. A user can provision
computing capabilities, such as server time and
network storage as needed and, sometimes,
automatically without requiring human interaction.

 Resource pooling. The provider’s computing resources
(storage, processing power, memory and network
bandwidth) are pooled to serve multiple users using a
multi-tenant model. Different physical and virtual
resources are dynamically assigned and reassigned
according to users’ demands.

 Rapid elasticity. Computing resources can be rapidly
and elastically provisioned to quickly scale out and
released to quickly scale in.

 Measured Service. Resource usage can be monitored,
controlled, and reported providing transparency for
both the provider and the user.

In order to leverage past investments as well as the benefits
of cloud computing, there is a need for defining methods and
techniques for migrating existing legacy systems taking into
consideration the investments that have already been done.
However, this is a non-trivial task as many challenges arise
when migrating to the cloud. These challenges include
designing migration plans, evaluating them and moving
applications to a targeted cloud computing model. Migration to
the cloud also requires experience in IT systems and cloud
management, and a structured approach to program
management [5]. Other challenges include security,
regulations, and fear of vendor lock-in [6]. In addition, defining
a migration strategy involves understanding and establishing
business priorities, then evolving a strategy that offers a fine
balance between costs and meeting business priorities.

There are two main approaches for migration to the cloud.
The first approach is to move the whole application to the
cloud. On the other hand, we may adopt a partial or hybrid
migration. The former approach is likely to provide higher

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 58

response times. However, the latter is more suitable for large
systems since it is not appropriate to move everything to the
cloud [6, 7]. In hybrid migration, some parts of the application
are moved to the cloud, while other parts are kept on premise
based on their security or performance requirements. Adopting
hybrid migration has several advantages. Firstly, the invested
money and effort in legacy systems are not abandoned [8].
Secondly, building new systems from scratch would require a
larger and relatively long-term investment, which carries more
risk than adapting the legacy system step by step.

To help answer the question “Which of the feasible
migration scenarios is optimal and how it can be determined?”,
we examine three critical and measurable characteristics that
vary from one migration scenario to another. We propose a
method that helps software engineers choose the optimal
migration scenarios. The main idea is to choose the option
which minimizes coupling between cloud-based and on-
premise components. Using coupling, we can estimate a
measure of the most important factors which are included in
most cloud providers’ billing systems. These factors measure
the utilization of the provider’s computing resources such as
network bandwidth and processing power. By, focusing on
these two utilities, we can estimate the running cost when
adopting a hybrid migration scenario. An optimal migration
candidate is then determined by minimizing a proposed cost
function that quantifies these factors.

The paper is organized as follows. Section II provides an
overview of the proposed method and presents some
background about the related concepts. Section III presents the
proposed approach for hybrid migration in detail. In Section
IV, an experimental study is performed and its results are
presented and discussed. Section V discusses the related
research in the area. Finally, Section VI presents concluding

remarks and outlines ideas for future work.

II. OVERVIEW

Cloud computing systems fall into one of five layers;
applications, software environments, software infrastructure,
software kernel, and hardware [4]. At the bottom of the cloud
stack is the hardware layer which is the actual physical
components of the system. At the top of the layers is the cloud
application layer, which is the interface of the cloud to the
users through web browsers and computing terminals. The
ability of clouds to add or remove resources within few
minutes allows matching resources to workload much more
efficiently. Real estimates of server utilization in data centers
range from 5% to 20% [9]. Employing elasticity allows
reducing this resources waste. Moreover, it makes use of the
economic benefits of the cloud by adopting the “pay-as-you-
go” concept since hours purchased via cloud computing is
usually distributed non-uniformly in time. Thus, a billing
system is used to measure the virtualized services. In [10], a
comparison of the resource pricing for Amazon AWS [11],
Google App Engine [12], Windows Azure [13], Force.com
[14], Rack space [15] and Go Grid [16] is presented. Factors
which are included in most cloud providers billing systems are
the transferred data between the cloud’s components and the
on-premise components (the outgoing and incoming
bandwidths), the processing power utilization (PPU) or the

compute utility, and the storage allocated by the client in GB.
Other factors include the recipients’ emails, additional public
IP addresses, and RAM usage, etc. We think that, in different
migration scenarios of software components, the amount of the
transferred data and the PPU are among the most critical and
measurable factors. This is because they contribute to the
running cost when cloud solutions are adopted. Thus, if a
hybrid method is to be followed, communication between
migrated parts and other on-premise parts in addition to
processing power utilization must be minimized.

Coupling is a measure of the degree of interaction between
software components [17]. Many types of coupling have been
identified, including data coupling, stamp coupling, control
coupling, and common coupling [18]. A good software system
should have low coupling among components, as systems with
highly coupled components are usually more difficult to
understand, maintain, and reuse [19]. In the proposed approach,
a set of dependencies which represents different degrees of
coupling among software components is used. A component
depends on another if it includes, calls, sets, uses, casts, or
refers to that component [20].

We propose a measure of utilization of network bandwidth
and processing power using coupling among different
components. The rationale behind using coupling is that if two
components are tightly coupled and at the same time they are
located apart, then it is expected that the amount of data
transfer between them is large which results in high bandwidth
utilization. On the other hand, if the tightly coupled
components are located in the cloud, then the large amounts of
data transfer between them result in high utilization of the
provided processing power.

III. THE PROPOSED APPROACH

The proposed approach is depicted in Fig. 1. Corresponding
to the basic ideas behind the approach presented above, it
consists of the following main steps:

1. Statically scan the implementation files of the

program to determine the system’s initial set of

components (IS) and the references among

components.

2. Run Perl scripts to generate the Dependency Table

(DT).

3. Generate all possible migration alternatives.

4. For each migration scenario, calculate the

corresponding cost function.

5. Choose the optimal migration scenarios

In the rest of this section, each step of the proposed

approach is explained in detail. In the first step, as shown in
Fig. 1, we statically scan implementation files using the static
analysis and metrics generation tool Understand [21]. Thus, we
can extract necessary information for our approach. This
information includes a list of system’s components and a list of
dependencies among components.

In the second step, we run Perl scripts to create the DT.
This table consists of the following attributes:

 The Component Ci, i=1, 2, .., N, where N is the total
number of components in the analyzed system.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 59

Depending on the type of the analyzed system, we can
choose a component to be a class or a group of classes
performing a certain function.

 The component Cj, j=1, 2, .., N, i j which Ci depends
on. It is denoted by Depends_On.

 The number of dependency relationships from Ci to Cj

which is denoted by Depends_On_Strength.

 The component Ck, k=1, 2,.., N, k i which depends
on Ci. It is denoted by Depended_On_By.

 The number of dependency relationships from Ck to Ci
which is denoted by Depended_On_By_Strength.

Thus, each tuple is of the form: Ci, Cj, a, Ck, b, where i, j,
k=1, 2, .., N, and a, b are two positive integers indicating the
number of dependency relationships from Ci to Cj and Ck to Ci
respectively.

Figure 1. The basic steps of the proposed approach

In the third step, we generate all possible combinations of
the systems’ components. This step is implemented by using
the function Combination () which takes as
inputs the IS and k=1, 2, .., N. The function produces as an

output

 sets. Each set consists of k components

corresponding to one of the k combinations of the Ci’s. For
example, if k=1, then Combination(k, C1, C2, …, CN) returns
the set {{C1},{C2},..,{CN}}. Similarly, if k=2, then
Combination(k, C1, C2, …, CN) returns the set
{{C1,C2},{C1,C3},..,{CN-1,CN}}, etc. It should be mentioned
that the total number of possible migration alternatives equals

to

 . The pseudo code of the main algorithm is

presented in Fig. 2.

In the fourth step, a cost function is defined to quantify the
cost of each generated migration alternative. The proposed cost
function can be easily adapted to correspond to any cloud
provider’s billing system such as Google’s App Engine billing
system [22], Amazon S3 [23] or Azure [24]. Moreover, the
proposed cost function does not correspond to the actual cost
imposed by the cloud provider, since the actual cost cannot be
calculated unless the migration scenario is deployed and run.
However, it can be used as a measure of the cost of different

migration alternatives. Hence, a comparison among
recommended scenarios can be done.

Figure 2. The pseudo code of the main algorithm

Components to be migrated are denoted by Ci. On the other
hand, on-premise components are denoted by Cj. The outgoing
and incoming transferred data are denoted by OG and IC
respectively. Thus, coupling between Ci (cloud-located
components) and Cj (on-premise components) contributes to
the outgoing data which are modeled by OGij. Whereas,
coupling between Cj and Ci is modeled by ICji which
contributes to the incoming data. If there is no dependency
(coupling) between Ci and Cj, OGij and ICji are set to zero. In
migration scenarios where the two components are both located
in the cloud, the number of dependency relationships among
them is added. Since in such cases, the dependencies contribute
to the estimated PPU.

 It should be noticed that not only the coupling strength
between components is considered but also its direction. This is
because we have to differentiate between the outgoing and the
incoming transferred data, since for some cloud providers, e.g.
Google App Engine, the cost of the amount of incoming data is
different from that of the outgoing data. In a migration
scenario, the set of components to be migrated to the cloud is
denoted by M={ Ci│i=1,2,..,N} where . Meanwhile,
the set P=IS-M={Cj│j=1,2,..,N} where and i
denotes the set of on-premise components.

Moreover, if we consider the case where database
components are to be migrated, then another factor that
accounts for the storage utility is to be added. This is reflected
by the coefficient d as shown in (1) which must be multiplied
by the size of the migrated database component. Hence, the
proposed cost function is given by (1).

Cost=a*

+b*

+c*

 +d*size(Ci) (1)

Where a, b, c and d are real constants that represent the weight

of each factor. PPU is estimated using (2).

Main Algorithm:
Input: IS, where IS={Ci│i=1,2,..,N}, DT.
Output: Optimal Migration Alternatives (OMA), where OMA={{Ci,
Cj,.., Ck}│i, j, k =1,2,..,N}
Inititialization: Set of components to be migrated M={}.
On-premise components P=IS.
Cost_Function=Cost_of_Migration= Migration_Candidates ={}
Algorithm:

For k=1 to N
 K_Candidate_Set= Combination().

For l=1 to

 M= K_Candidate_Set{l}
 Cost_of_Migration{l} =Calculate_Cost_Indicator(M).
 Append Cost_of_Migration{l} to Cost_Function{l}.
 Append M to Migration_Candidates{l}
 End for
End for

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 60

PPU(Ci,Cj)=

 (2)

Fig. 3 presents the pseudo code of the proposed cost
function for a certain migration scenario.

Figure 3. The pseudo code of the proposed cost function

IV. AN EXPERIMENTAL STUDY

An ERP system is used to evaluate the proposed approach.
The system is used in a medium-sized higher education
institute to manage and integrate work throughout the whole
organization. It is a web application that is implemented using
Visual C# with SQL Server. In addition, it adopts the three tier
architecture. The main components of the system are student
affairs, human resources and financial management. These
components are implemented and managed using two front-end
components denoted by Cfe, three business logic components
denoted by Cbl and three database components denoted by Cdb.
The user can access and manage the collaboration among these
components usually through Cfe components. In addition, she
can access the Cbl directly. Moreover, some business-logic
components can communicate directly. In order to model the
ability of a user to access some components of the business-
logic tier directly, we added a component denoted by Cui. Fig. 4
shows a high-level overview of the used system where the
arrows indicate that connected components can communicate.
In addition, Table I provides some size metrics about the used
system.

We considered the case where the database components are
kept on-premise due to security and privacy concerns attached
with moving them to the cloud. Hence, the components that
will be included in the analysis are only the front-end and
business-logic components.

Table II presents the total incoming and outgoing
dependency relationships among the different components of
the system. For instance the sum of the calls from Cfe1 to Cbl1
equals to 84. Meanwhile Cbl1 calls Cfe1 52 times. It is worth
pointing out that these values are calculated by simply adding
the calls to and from the whole set of classes in each
component. Also, notice that the empty cells above the
diagonal mean that there is no direct relation between involved
components. In addition, since there are no direct relationships
among the last four components, we remove their
corresponding rows from Table II.

Figure 4. An overview of the used system

TABLE II. SUM OF OUTGOING/INCOMING DEPENDENCY RELATIONSHIPS

AMONG DIFFERENT COMPONENTS

Ci Cfe1 Cfe2 Cbl1 Cbl2 Cbl3 Cdb1 Cdb2 Cdb3 Cui

Cfe1
 84

/52

Cfe2
 68

/13

37

/20

Cbl1
 25

/16

 158

/ 49

Cbl2
 11

/42

 214

/ 38

 13

/29

Cbl3
 118

/45

16

/35

The suggested migration scenarios are implemented and

deployed in the cloud using Microsoft Windows Azure as a
platform. We used the Cloud Services option with two medium
instances (one instance has 1.6 GHz CPU, 3.5 GB memory and
490 GB storage). The setup involves two data centers; one of
them is the local data center and the other one is the cloud data
center which is located in West Europe. Evaluations were
based on the assumption that all requests are internal i.e., they

Global variables: IS, DT.
Function Calculate_Cost_Indicator(M)
Input: M={ Ci│i=1,2,..,N} where
Output: A real number representing the cost of the migration
alternative
Initialization: OG=IC=PPU=0, P=IS-M={Cj│j=1,2,..,N} where
 and i
 For each Ci in M
 For each Ck in Ci.DT.Depends_On

If Ck M OG=OG+ Ci.DT.Depends_On_Strength
 Else

 PPU=PPU+ Ci.DT.Depends_On_Strength
 End for
 For each Ck in Ci.DT.Depended_On_By
 If Ck M IC=IC+Ci.DT.Depended_On_By_Strength

Else PPU=PPU+ Depended_On_By_Strength
 End for
 End for

Cost= a*OG+b*IC+c* PPU+ d*Size(Ci) // d=zero if Ci is not a
database component.

TABLE I. SOME SIZE METRICS FOR THE USED

SYSTEM

of classes 3,125

of Files 1,970

of Methods 19,581

of Lines 900,245

Size of (GB) 5.2

Size of (GB) 8.3

Size of (GB) 2.4

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 61

are initiated from within the organization. Each recommended
migration scenario is deployed in the cloud and tested for a
complete normal working day. In addition, real costs associated
with each scenario are calculated.

The use cases correspond to the normal system usage which
usually involves registration of a new student in the Students
Database, enrolling students in a list of subjects, generating
time tables, issuing a registration-fees receipt and generating
salaries’ sheets for the employees including professors and
teaching assistants. Since the evaluation is based on Azure
billing system where the compute, storage and outgoing
bandwidth utilities are the most important measured factors, we
set the values of a, b, c and d in (1) to 2, 0, 4 and 0
respectively. These values were chosen using Azure price
calculator [25]. In addition, since we only consider the case
where database components are kept on-premise, the value of d
is set to zero. These values reflect the fact that PPU (compute
utility) usually costs more than the bandwidth utility in Azure.
It should be mentioned that the proposed approach can be
adapted to reflect different pricing models. For example, if we
use Google App Engine instead of Azure, the suggested
suitable values for a: b: c can be chosen to form the ratios 0.12:
0.1: 0.1, where the value of d is set to zero for non-database
components.

Table III presents the components involved in each of the
best five migration scenarios together with their estimated costs
and averaged real costs per month as imposed by Azure.
Meanwhile, Fig. 5 presents a comparison between estimated
and real costs for the best five recommended scenarios after
normalizing the values given in Table III. As shown in the
figure, real costs increase as estimated ones increase for the
five scenarios except for the third one. This is may be due to
the variations in the set of use case scenarios. Also, the best
five suggested migration scenarios include the front-end
components as they are loosely coupled with other components
in comparison with business-logic components.

TABLE III. THE ESTIMATED AND THE ACTUAL COSTS OF THE BEST FIVE

MIGRATION SCENARIOS

Migration Scenario Estimated Cost Real Cost ($/month)
Cui 28.23 332.11
Cfe1 42.12 347.26
Cfe2 73.85 288.13

Cui , Cfe1 88.22 417.52
Cui , Cfe2 180.84 534.13

It should be mentioned that the suggested migration
scenarios vary in the difficulty of the actual deployment to the
cloud. For example, moving Cui resulted in the refactoring and
reconfiguring most of other components’ classes. Thus, the
exerted effort in the deployment of suggested scenarios needs
to be estimated and added to the actual costs of a migration
scenario.

Figure 5. A comparison between estimated and real costs for the best five

suggested migration scenarios.

V. RELATED RESEARCH

Cloud computing is an emerging research topic. Every
month a large number of works that address related issues to
this field appears. Many works addressed the problem of
migration to the cloud. In [8], for example, the authors
investigated the hybrid migration of architectures where part of
the enterprise operation is hosted on-premise and the other part
is in the cloud. The approach is based on optimization to
identify application components to migrate to the cloud. The
chosen components maximize the benefit taking into account
enterprise-specific constraints, cost savings, and increased
transaction delays and wide-area communication costs that
may result from the migration. Evaluations based on real
enterprise applications and Azure-based cloud deployments
show the benefits of a hybrid migration approach, and the
importance of planning which components to migrate. The
authors conclude that hybrid migration can provide significant
savings and lower delay time than moving the complete
application to the cloud. In addition, they prove that the
interaction among components has a strong effect on the
migration decision.

Moreover, in [26], the authors presented a methodology and
tools for model-driven migration of legacy applications to a
service-oriented architecture with deployment in the cloud.
They decomposed and decoupled the clients’ architecture to
take advantage of cloud computing services.

 In addition, in [27], a study of the basic parameters for
estimating the potential costs deriving from building and
deploying applications on cloud and on-premise assets is
presented. The authors defined a cloud migration framework to
drive the new and existing applications to cloud platform.
Venugopal et al. [28] presented a connection oriented
framework for migration to multi-core cloud. This is
accomplished using a set of tuning parameters for the web
services to smoothly migrate the enterprise application to the
cloud. In addition, in [29], a framework for cloud migration
called the Cloud Motion Framework is presented. The
framework evaluates alternative ways to host each component

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5

N
o

rm
al

iz
ed

 C
o

st

Scenario number

Estimated

Real

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 62

based on the application model. The approach assumes that the
components are independent and self-contained.

Also, in [30], a genetic-algorithm-based approach is
proposed to compose services in cloud computing. A
comparison is presented between the proposed approach and
the random selection algorithms to prove its efficiency. In [31],
another framework called CloudGenius is presented.
CloudGenius is based on a compatible mix of software images
to ensure that Quality of Service (QoS) targets of an
application are achieved. Also, an automated decision-making
process is presented. The framework employs the well known
multi-criteria decision making technique, called Analytic
Hierarchy Process, to automate the selection process based on
the model and QoS parameters related to the application.
Moreover, Tak et al. [32] studied the economics of moving to
the cloud. They show that application characteristics such as
workload intensity, growth rate, storage capacity and software
licensing costs produce complex combined effect on overall
costs and investigate costs of different deployment choices.

To the best of our knowledge, none of the existing
techniques provide a framework for locating parts to be moved
to the cloud statically i.e., by investigating the code and
analyzing relationships among different components.
Moreover, all of these techniques depend on a large number of
assumptions in addition to stochastic analysis which make
them more subject to errors.

VI. CONCLUSIONS AND FUTURE WORK

In hybrid migration, software engineers face the problem of
locating the optimal set of components to be migrated statically
before actually moving them and calculating the benefit
associated with each available migration scenario. This is even
more difficult for large systems such as enterprise applications.
In addition, if software engineers need to re-factor their
applications into SaaS systems, the locations of refactoring to
be applied must be determined. In this paper, an approach to
tackle this problem is presented. The approach is based on
measuring coupling among systems components and choosing
the migration scenario which minimizes a proposed cost
function. The cost function focuses on some measurable factors
which are included in the billing systems of cloud providers.
Also, the proposed approach is integrated into a decision
support system which helps the software engineer make the
right decision about candidate parts for migration.

We conclude that migration scenarios can be guided
statically by measuring the degree of coupling among
migration candidates. Experimental results emphasize the
opinion that less coupled and more generic components are
more suitable for migration. Adaptation of the presented
approach can be easily done to represent different granularity
levels, starting from components in component-based software
(CBS) down to the finest possible level of the system to be
migrated. For a CBS migration for example, metrics proposed
for measuring coupling in CBS can be used (e.g., [33]).

The presented approach can be applied to any application
whether it is a web application or not. However, web
applications are more suitable to cloud migration than desktop

applications. In comparison with other approaches, the
presented approach is simple, easily adaptable, and less
complex since we do not have to solve an optimization
problem.

Currently, we are studying other factors that may affect the
migration decision. For instance, performance issues such as
reliability and availability not only cost-effectiveness issues
should be considered. Also, security issues must be taken into
account and integrated within the proposed approach for
migration. In addition, the scenarios when database
components are to be migrated are currently considered.

Future work includes the study of the effect of test case
scenarios on the results of the proposed approach as this point
constitutes a threat to validity. Moreover, to generate
migration candidates, we apply exhaustive search which is a
problem of exponential order. However, usually the number of
software components is within the order of few tens for small-
sized organization which makes the search process feasible in
this case. This step must be modified if the number of
considered components is high.

REFERENCES

[1] M.A. Vouk, Cloud computing — Issues, research and implementations,
in: Proceedings of the 30th International Conference on Technology
Interfaces, pp.31-40, June, 2008.

[2] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya, CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms, Software: Practice and Experience (SPE). 41(2011), pp. 23-
50.

[3] V. Chang, G. Wills, and D. De Roure, A Review of Cloud Business
Models and Sustainability, in: Proceedings of the IEEE 3rd International
Conference on Cloud Computing, pp 43-50, July, 2010.

[4] A. Iosup, S. Ostermann, M.N. Yigitbasi, R. Prodan, T.Fahringer and
D.H.J. Epema, Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing, IEEE Transactions on Parallel and
Distributed Systems, 22(6)(2011), pp.931-945.

[5] L. Badger, T. Grance, R. P.-Comer and J. Voas, Draft cloud computing
synopsis and recommendations, National Institute of Standards and
Technology, Special Publication 800-146, 2011.

[6] S. Mallya, Migrate Your Application to Cloud Practical Top 10
Checklist. (2010), available at:

http://www.prudentcloud.com/cloud-computing-technology/migration-
to-cloud-top-10-checklist-24042010/

[7] C. Kothari and A. K. Arumugam, Cloud Application Migration. (2010),
available at: http://cloudcomputing.sys-con.com/node/1458739

[8] M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and
M. Tawarmalani, Cloudward bound: planning for beneficial migration of
enterprise applications to the cloud. SIGCOMM Comput. Commun.
Rev. 40(4) (2010), pp. 243-254.

[9] L. Youseff, M. Butrico, and D. Da Silva, Toward a Unified Ontology of
Cloud Computing, in: Proceedings of Grid Computing Environments
Workshop, pp.1-10, 2008.

[10] T. Harris, Comparison of cloud computing services. (2012)

Available at:

http://www.whitepapersdb.com/white-paper/9202/cloud-computing-
services--a-comparison

[11] Amazon AWS, available at: http://aws.amazon.com/.

[12] Google App Engine, available at: https://appengine.google.com/

[13] Windows Azure, available at: www.windowsazure.com/

http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.prudentcloud.com/cloud-computing-technology/migration-to-cloud-top-10-checklist-24042010/
http://www.prudentcloud.com/cloud-computing-technology/migration-to-cloud-top-10-checklist-24042010/
http://chetankothari.sys-con.com/
http://ashokarumugam.sys-con.com/
http://cloudcomputing.sys-con.com/node/1458739
http://www.whitepapersdb.com/white-paper/9202/cloud-computing-services--a-comparison
http://www.whitepapersdb.com/white-paper/9202/cloud-computing-services--a-comparison
http://aws.amazon.com/
https://appengine.google.com/
http://www.windowsazure.com/

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 63

[14] Force.com, available at: http://www.force.com/.

[15] Rack space, available at: www.rackspace.com/.

[16] Go Grid, available at: www.gogrid.com/.

[17] E. E. Mills, Software Metrics, SEI Curriculum Module SEI-CM-12-1.1,
Seattle University, 1988.

[18] C. Kaner and W.P. Bond, Software Engineering Metrics: What do they
measure and how do we know? in: 10th Intl. Software Metrics
Symposium, Sept, 2004.

[19] L. Yu and S. Ramaswamy, Categorization of Common Coupling in
Kernel-Based Software, in: Proceedings of the 43rd ACM Southeast, pp.
207–210, 2005.

[20] Understand 3.0 User Guide and Reference Manual, available at:

www.scitools.com/documents/manuals/pdf/understand.pdf.

[21] Understand, a static analysis tool, available at: www.scitools.com/

[22] Pricing of Google App Engine, available at:
https://developers.google.com/appengine/docs/billing

[23] Pricing of Amazon EC2, available at:
http://aws.amazon.com/s3/#pricing.

[24] Pricing of Windows Azure, available at:
http://www.windowsazure.com/en- us/pricing/.

[25] Windows Azure Calculator, available at:

http://www.windowsazure.com/en-us/pricing/calculator/

[26] P. Mohagheghi and T. Sæther, Software Engineering Challenges for
Migration to the Service Cloud Paradigm: Ongoing Work in the

REMICS Project, in: Proceedings of IEEE World Congress on Services,
pp.507-514, July, 2011.

[27] S. Bibi, D. Katsaros, and P. Bozanis, Application Development: Fly to
the Clouds or Stay In-house?, in: 19th IEEE International Workshop
on Infrastructures for Collaborative Enterprises, pp.60-65, 2010.

[28] S.Venugopal, S. Desikan, K. Ganesan, Effective Migration of Enterprise
Applications in Multicore Cloud, in: Proceedings of the 4th IEEE
International Conference on Utility and Cloud Computing, pp.463-468,
2011.

[29] T. Binz, F. Leymann, D. Schumm, CMotion: A framework for migration
of applications into and between clouds, in: Proceedings of the IEEE
International Conference on Service-Oriented Computing and
Applications, pp.1-4, Dec. 2011.

[30] Z. Ye, X. Zhou, and A. Bouguettaya. Genetic algorithm based QoS-
aware service compositions in cloud computing, in: proceedings of the
16th international conference on Database systems for advanced
applications: Part II. Springer-Verlag, Berlin, Heidelberg, pp. 321-334,
2011.

[31] M. Menzel and R. Ranjan, CloudGenius: decision support for web server
cloud migration, in: Proceedings of the 21st international conference on
World Wide Web (WWW '12). ACM, USA,pp. 979-988, 2012.

[32] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, To move or not to
move: the economics of cloud computing, in: Proceedings of the 3rd
USENIX conference on Hot topics in cloud computing USA, 2011.

[33] J. C. Yeap, W.K. Bruda, A Review of Component Coupling Metrics for
Component-Based Development, World Congress on Software
Engineering, pp.65-69, May, 2009.

http://www.force.com/
http://www.rackspace.com/
http://www.gogrid.com/
http://www.scitools.com/documents/manuals/pdf/understand.pdf
https://developers.google.com/appengine/docs/billing
http://aws.amazon.com/s3/#pricing
http://www.windowsazure.com/en-%20%20%20%20us/pricing/

