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Abstract—Recently, numerical solutions of stochastic differential 

equations have received a great deal of attention. Numerical 

approximation schemes are invaluable tools for exploring their 

properties. In this paper, we introduce a class of stochastic delay 

age-dependent  (vintage) capital system with Markovian 

switching, and investigate the convergence of numerical 

approximation. The key aim is to show that the numerical 

solutions will converge to the true solutions under the local 

Lipschitz condition. A numerical example is provided to illustrate 

the theoretical results. 
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I.  Introduction 

Over the last decade, systems with Marvokian jumps have 
been attracting increasing research attention [1,2,3,4]. The 
Markovian jump systems(MJSs) have the advantage of 
modelling the dynamic systems subject to abrupt variation in 
their structures, such as component failures or repairs, sudden 
environmental disturbance, changing subsystem 
interconnections, and operating in different points of a 
nonlinear plant[5].  

Deterministic models of  age-dependent (vintage) capital  
may be described  by[6-8]. 
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where ],0[],0[ TAQ  ,  the stock of capital goods of age 

a at time t  is denoted by ),( taK ， )(tN is the total sum of 

the capital, a is the age of the capital, the investment t  in the 

new capital,and the investment )),(,( taKtf in the capital of 

age a are the endogenous (unknown) variables. The maximum 

physical lifetime of capital A , the planning interval of 

calendar time ),0[ T ,the depreciation rate ),( ta of capital, 

and the capital density )(0 aK  (the initial distribution of 

capital over age) are given. )(t  denotes the accumulative rate 

at the moment of t ; 1)(0  t , and )(tA  is the technical 

progress at the moment of t . Eq.(1) is a generalization of the 

deterministic capital equation. Eq.(1) describes the evolution of 
the composition of the productive capital as a function of 
purchasing/selling new or used capital. According to Eq.(1), 

machines of any age between 0 and A can be bought or sold. 

The structure of ),( taK  reflects different situations in 

economics and finance: its dependence on a  illustrates the 

economic depreciation and physical deterioration of the capital, 
and  represents the technological change embodied in capital. 

The case 0/),( ataK  corresponds to a technical progress 

when new capital is more efficient.  In economics such models 
are known as vintage capital models (VCMs). They represent a 
new prospective mathematical tool for modeling technological 
innovation. It is a fast growing area of research. Its strong 
impact on mathematical finance is motivated by efficient 
description of fundamental finance characteristics such as cost 
of capital, risk of investment decisions, dynamics of finance 
investments, market uncertainty, etc. The validity of VCMs on 
real data is provided, i.e., in [9,10]. 

By Eq.(1), economy growth model focuses on four 
variables: output, capital, labor , and technological progress. 
Capital, labor, and technological progress are combined to 
produce output. However, some important sources of 
uncertainty may be discontinuous, recurrent, and fluctuating. 
Such significant events include innovations in technique, 
introduction of new products, natural disasters, and changes in 
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laws or government policies.  When  capital, labor, and 
technological progress in corporates also abrupt changes in 
their structure, the Markovian jump  system is very 
appropriate to describe their dynamics[4,11]. There exists an 
extensive literature dealing with stochastic differential 
equations with discontinuous paths incurred by L'evy 
processes (for instance, see monographs [12,13] and 
references therein). These equations are used as models in the 
study of queues, insurance risks, dams, and more recently in 
mathematical finance. In recent years, Markovian-switching 
models have attracted much attention by researchers and 
practitioners in economics and finance[14,15,16]. These 
models are able to incorporate the structural changes in the 
model dynamics, which might be attributed to the changes in 
macroeconomic conditions and different stages of business 
cycles. Now, applications of Markovian switching models can 
be found in various important fields in financial economics. 
Some of these applications include Elliott et al [14] for asset 
allocation, Elliott et al. [15] for short rate models, Elliott and 
Hinz [16] for portfolio analysis and chart analysis, Guo [17] 
and Buffington and Elliott[18] for option valuation, [15] for 
pricing and hedging volatility and variance swaps, and others. 
Recently, the spotlight has turned to the application of 
Markovian switching models to value options. Markovian 
switching models provide a more realistic way to describe the 
asset price dynamics for option valuation. They can incorporate 
the effect of structural changes in macro-economic conditions 
and business cycles on option valuation. In particular, the 
analytical pricing formula is given by the integral of the Black-
Scholes-Merton formula and the occupation time of theregime-
switching process. Guo [17] introduced a novel option pricing 
approach under a Markovian switching geometric Brownian 
motion (GBM). 

Since time delay was first considered in the investment 
processes in [19], lots of literature such as have incorporated 
time lag into the dynamic economics and considered the 
impacts of delayed time on the whole economic system 
[20,21,22]. [20] analyzed an augmented IS-LM business cycle 
model with the capital accumulation equation that two time 
delays are considered in investment processes according to 
Kalecki's idea. Zak[21] investigated the Solow growth model 
with time lag, and considered that investment depended only 
on the capital stock at the past time and that the capital stock 
depreciated at the same gestation period, which it takes to 
produce and install capital goods. 

We consider the following stochastic delay differential 
equations: 
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where ].0,[],0[  AR Uncertainty in the financial 

market is assumed to enter through the components of a 

Brownian motion tW , and the components of a Markovian 

process. 

Because, most stochastic modeling with Markovian 
switching are nonlinear and cannot have explicit solutions, so 
the construction of efficient computational methods is of great 
importance. For example, Yuan and Mao[23] gave the 
convergence of the Euler-Maruyama method for stochastic 
differential equations with Markovian switching, Li et. al[24] 
discussed the convergence of numerical solution to stochastic 
delay differential equation with  Markovian switching, Zhou 
and Wu [25]  investigated the convergence of numerical 
solutions to neutral stochastic delay differential equations with 
Markovian switching under the local Lipschitz condition.  

However, to the best of our knowledge, there are not any 
numerical methods available for stochastic partial differential 
equations with Markovian switching. Inthis paper, we use the 
recent mathematical technique on the stochastic population 
system to estimate its numerical solutions . Some mathematical 
results may be found in [26,27,28]. We shall extend the idea 
from the papers [25, 29] to the numerical solutions for 
stochastic delay age-dependent capital system with Markovian 
switching. The main purpose of this paper is to investigate the 
convergence of numerical approximation of stochastic delay 
age-dependent capital system with Markovian switching under 
the local Lipschitz condition. In Section 2, we shall collect 
some basic preliminaries results which are essential for our 
development and the Euler approximation analysis, and Euler 
approximation is introduced. In Section 3, we give several 
lemmas which are useful for our main results. In Section 4, we 
shall show the main results that the numerical solutions will 
converge to the true solutions to stochastic  delay age-
dependent capital equations with Markovian switching under 
the given conditions. In section 5, A numerical example is 
provided to illustrate the theoretical results. Conclusion is 
given in section 6. 

II. PRELIMINARIES AND APPROXIMATION 

Throughout this paper, let 
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V is a Sobolev space. ]),0([2 ALH  such that 

 .'' VHHV   

Then ]),0([1 AHV  is the dual space of V . We denote 

by ||  and   the norms in V , and V  respectively; 

by , the duality product between V ,V  , and by ( , ) the 

scalar product in H . K is a real separable Hilbert space. For 
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an operator ),( HKLB being the space of all bounded 

linear operators from K into H ,we denote by 
2

B the 

Hilbert-Scmidt norm,i.e. 

 ).(
2

2
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Let ),,( PF be a complete probability space with a 

filtrations  
0ttF  satisfying the usual conditions(i.e.,it is 

increasing and right continuous while 0F  contains all p-null 

sets). 0  and )];0,[],0([: HADD   denotes the 

family of all right-continuous functions with left-hand limits  

from ]0,[],0[ A  to H . The space 
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where .0  Here 0ij  is the transition rate from i to j if 
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We assume that the Markov chain  r  is independent of 

the Brownian motion tW .It is well known that almost every 

sample path of )(tr  is a right-continuous step function with a 

finite number of simple jumps in any finite subinterval of 
R . 

Let  
)];,0[],0([ VTALL pp
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  and  
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      We consider stochastic delay age-dependent(vintage) 
capital system with Markovian switching (2), where 

HHADLSf H  ):]0,[]),0([: 2   be a family 

of nonlinear operators, tF -measurable almost surely in t . 
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version of Eq.(3) is given by the equation 
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where we set  


0

1 , 0)(
0j ji hP as usual. generate 

independently a new random number 2   which is again 

uniformly distributed in [0,1] and then define 
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Repeating this procedure, a trajectory of  Nkr h

k ,2,1,   

can be generated. This procedure can be carried out 
independently to obtain more trajectories. After explaining 
how to simulate the discrete Markov chain 

 Nkrh

k ,2,1,  . we can now define Euler-Maruyama 

approximate solution for stochastic delay age-dependent 
(vintage) capital  system with Markovian switching (2). For 
system (2) the discrete approximate solution 

on TNhhht  ,2,,0  is defined by the iterative scheme 
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 In an analogous way to the corresponding proof presented in 
[30], we may establish the following existence and uniqueness 
conclusion: under the conditions (i)-(iv), Eq.(2) has a unique 

continuous solution ),( taK  on Qta ),( . 

III. SEVERAL LEMMAS 

we will need the following result. As for )(tr , the 

following lemma is satisfied (see [31]). 
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where   is the stopping times defined by    
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are the first time that tQ and tK  leave a bounded region 

D respectively . We will define D  more precisely later. 

Proof.  From (6), one can obtain 
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Applying Gronwall's lemma, ],0[ Tt  one can get 
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The proof is finished. 
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approximate solution (6) will converge to the exact solution to 

Eq.(2) in the sense then 

 0||suplim 2

00











tt

Ttt
QKE 

Theorem 8.   If   is the first exist time of the solution tK to 

equation (3) from the domain )(rD ,then the probability 

 .1)(  TP 

Proof    Whence applying Lemma 2 leads to 

 .||sup 1

2

0

CKE t
Tt













On noting that rK 
2

  , since K  is on the boundary of 

)(rD , the probability )( TP   can now be bounded as 

follows. 

 

  )()]([

)]([][
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ttt
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






whence rearranging (20) leads to 
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   rCTP /)( 1 

Here r  can be made as large as required, for a given T 

and ,0K  to accommodate any )1,0( . Theorem 7 is 

proved.  

     We note that the following useful result follows directly 

from Theorem 8. 

 Lemma 9.  let   be the first exist time of the solution tK  to 

equation (2) from the domain )(rD , and let conditions (i)-(iv) 

are satisfied, then the limit of GrD
r




)(lim  and, for 

],0[ Tt and GK 0  , tK  remains in G . Furthermore, 

tK  is the unique solution of equation (2) on ],0[ Tt  for all 

finite T . 
Proof of this result can be found in paper of Mao[32]. 

We require a similar result to Theorem 10 for the Euler 

approximate solution tQ . 

Theorem 10.  let   be the first exit time of the Euler 

approximate solution (6) from the domain )(rD . Suppose 

conditions (i)-(iv) are satisfied, then (for sufficiently small h ) 

probability 


,1)( MTP  


where M  is a constant. 

 Proof  Noting that tQ  is the solution to (6), and apply 

Lemma 3 leads to 

2

2

][ CQE t  

An argument analogous to that used to prove Theorem 2 can 

now be used to bound )( TP  .Since Q  is on the 

boundary of )(rD then rQ 
2

  which  leads to 

  ).()]([2 TrPIrEC T    

Rearranging this inequality reveals that 


,)(  MTP 


where 12 / CCM  , is defined in equation (21). 

The significance of Theorem 8 and Theorem 10 are that 

both tK  and tQ remain within the domain )(rD  and 

therefore by Theorem 7 the Euler scheme will converge to the 

tK , with probability 

.)1()()()(  MTPTPTP  

Theorem 11 .  let G be an open subset of H , and denote the 

unique solution of (2) for ],0[ Tt  given GK 0  

by GK t  . Define tQ  as the Euler approximation (6) and let 

GD   be any bounded set. Suppose conditions (i)-(iv) are 

satisfied. Then for any , 0   there exists 0 t such 

that 

,)sup(
2

0

 


tt
Tt

KQP 

provided 
 th  and the initial value GK 0 . 

 Proof of this result can be found in paper of Mao[32]. 

V. AN  EXAMPLE 

 In this section we shall discuss an example to illustrate our 

theory. 

Example. Let tW  be a scalar Brownian motion. Let )(tr  be a 

right continuous Markovian chain taking values in  2,1S  

with the generator 

 .
22

11
)( 22 












 ij 

Of course tW  and )(tr are assumed to be independent. Let us 

consider a  stochastic delay capital system of the form 
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Here 1T , 1.0 , ),0()1,0(),( Tta  , 

]0,1.0[)1,0(),( ta , ])1,0([2LH  , ])1,0([1

0WV   

(a Sobolev space with elements satisfying the boundary 

conditions above), 
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It is easy to verify that the conditions (i)-{(iv) are satisfied. 
Then, the approximate solution will converge to the true 

solution of (23) for any ),0()1,0(),( tta   in the sense of 

Theorem 10. 

Obviously, ),( taK in (23) cannot be solved explicitly. It is 

necessary to know the numerical approximation ),( taQ  of 

),( taK . Take  0005.0h , 05.0a . Fig.1 is 

numerical simulations of the stochastic age-dependent  capital 
system with Markovian switching (24) with 1000 experiments, 
where  

).,(
1000

1
),(),(

1000

1

taQtaEQtaK
k

K






 It clearly reveals the age-dependent  capital system  tendency. 

VI. CONCLUSION 

Some important sources of uncertainty may be 
discontinuous, recurrent, and fluctuating. Such significant 
events include innovations in technique, introduction of new 
products, natural disasters, and changes in laws or government 
policies. The relationship among these events and the 
profitability of risky assets can be very complicated. 
Furthermore, there can be numerous events and economic 
variables that are potentially related to the profitability of risky 
assets. In order to describe this situation, we introduce a class 
of stochastic age-dependent  capital  dynamic system. To the 
best of our knowledge, there are not any numerical methods 

available for stochastic partial differential equations with 
Markovian switching. Thus, numerical approximation schemes 
are invaluable tools for exploring its properties.  

In this paper, we extend the idea from the papers [25,29] to 
the numerical solutions for stochastic delay age-dependent 
capital system with Markovian switching. Using the recent 
mathematical technique for the stochastic differential 
equations, this paper investigates the convergence of numerical 
approximation of stochastic delay age-dependent capital 
system with  Markovian switching under the given conditions.  
The paper obtains the condition that can ensure that the 
approximate solution will converge to the true solution for 
stochastic delay age-dependent  capital system. At the same 
time, we  propose  the numerical solution for stochastic delay 
age-dependent capital system  with  Markovian switching. The 
approach is based on constructing a discrete-time 
approximation to exact solution by consider the jump time.  An 
example has been given for illustration of our theory. 
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