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Abstract—Recently, numerical solutions of stochastic differential
equations have received a great deal of attention. Numerical
approximation schemes are invaluable tools for exploring their
properties. In this paper, we introduce a class of stochastic delay
age-dependent (vintage) capital system with Markovian
switching, and investigate the convergence of numerical
approximation. The key aim is to show that the numerical
solutions will converge to the true solutions under the local
Lipschitz condition. A numerical example is provided to illustrate
the theoretical results.
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. Introduction

Over the last decade, systems with Marvokian jumps have
been attracting increasing research attention [1,2,3,4]. The
Markovian jump systems(MJSs) have the advantage of
modelling the dynamic systems subject to abrupt variation in
their structures, such as component failures or repairs, sudden
environmental disturbance, changing subsystem
interconnections, and operating in different points of a
nonlinear plant[5].

Deterministic models of age-dependent (vintage) capital
may be described by[6-8].

oK(a,t) N oK(a,t)

= —a/E(a,t)K(a%+ f(r(t),K(a1) in Q

K(0,t) = ¢(t) = yOADF (L), [ K(at)da) in te[0T] (1)
K(a,0) = K,(0) inae(0,A)
N = [ K(atyda inte[0,T]

where Q =[0, A]x[0,T], the stock of capital goods of age
aat time t is denoted by K(a,t), N(t)is the total sum of
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the capital, a is the age of the capital, the investment t in the
new capital,and the investment f (t, K(@,t))in the capital of
age a are the endogenous (unknown) variables. The maximum
physical lifetime of capital A , the planning interval of
calendar time [0,T) ,the depreciation rate z(a,t) of capital,

and the capital density K,(a) (the initial distribution of
capital over age) are given. ¥(t) denotes the accumulative rate

at the moment of t; 0 < y(t) <1, and A(t) is the technical

progress at the moment of t. Eq.(1) is a generalization of the
deterministic capital equation. Eq.(1) describes the evolution of
the composition of the productive capital as a function of
purchasing/selling new or used capital. According to Eq.(1),

machines of any age between 0 and A can be bought or sold.

The structure of K(@,t) reflects different situations in

economics and finance: its dependence on a illustrates the
economic depreciation and physical deterioration of the capital,
and represents the technological change embodied in capital.

The case K(a,t)/a > 0 corresponds to a technical progress

when new capital is more efficient. In economics such models
are known as vintage capital models (VCMs). They represent a
new prospective mathematical tool for modeling technological
innovation. It is a fast growing area of research. Its strong
impact on mathematical finance is motivated by efficient
description of fundamental finance characteristics such as cost
of capital, risk of investment decisions, dynamics of finance
investments, market uncertainty, etc. The validity of VCMs on
real data is provided, i.e., in [9,10].

By Eq.(1), economy growth model focuses on four
variables: output, capital, labor , and technological progress.
Capital, labor, and technological progress are combined to
produce output. However, some important sources of
uncertainty may be discontinuous, recurrent, and fluctuating.
Such significant events include innovations in technique,
introduction of new products, natural disasters, and changes in
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laws or government policies. When capital, labor, and
technological progress in corporates also abrupt changes in
their structure, the Markovian jump  system is very
appropriate to describe their dynamics[4,11]. There exists an
extensive literature dealing with stochastic differential
equations with discontinuous paths incurred by L'evy
processes (for instance, see monographs [12,13] and
references therein). These equations are used as models in the
study of queues, insurance risks, dams, and more recently in
mathematical finance. In recent years, Markovian-switching
models have attracted much attention by researchers and
practitioners in economics and finance[14,15,16]. These
models are able to incorporate the structural changes in the
model dynamics, which might be attributed to the changes in
macroeconomic conditions and different stages of business
cycles. Now, applications of Markovian switching models can
be found in various important fields in financial economics.
Some of these applications include Elliott et al [14] for asset
allocation, Elliott et al. [15] for short rate models, Elliott and
Hinz [16] for portfolio analysis and chart analysis, Guo [17]
and Buffington and Elliott[18] for option valuation, [15] for
pricing and hedging volatility and variance swaps, and others.
Recently, the spotlight has turned to the application of
Markovian switching models to value options. Markovian
switching models provide a more realistic way to describe the
asset price dynamics for option valuation. They can incorporate
the effect of structural changes in macro-economic conditions
and business cycles on option valuation. In particular, the
analytical pricing formula is given by the integral of the Black-
Scholes-Merton formula and the occupation time of theregime-
switching process. Guo [17] introduced a novel option pricing
approach under a Markovian switching geometric Brownian
motion (GBM).

Since time delay was first considered in the investment
processes in [19], lots of literature such as have incorporated
time lag into the dynamic economics and considered the
impacts of delayed time on the whole economic system
[20,21,22]. [20] analyzed an augmented IS-LM business cycle
model with the capital accumulation equation that two time
delays are considered in investment processes according to
Kalecki's idea. Zak[21] investigated the Solow growth model
with time lag, and considered that investment depended only
on the capital stock at the past time and that the capital stock
depreciated at the same gestation period, which it takes to
produce and install capital goods.

We consider the following stochastic delay differential
equations:

oK(a,t) + oK(a,t)
at at
—u(@ahK(@ + f(r).K(@t),K(@t-1))
+9(r 0K @0 K@t-0) T, in Q
KO =40 =7OAOF(LO. [ K@bd) in tepr] @
K(avt) = (p(avt)v in Ii
N® =] K(atda, in te[0,T]
r(O) = io;
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where R =[0, A]x[~7,0]. Uncertainty in the financial
market is assumed to enter through the components of a
Brownian motion W, , and the components of a Markovian
process.

Because, most stochastic modeling with Markovian
switching are nonlinear and cannot have explicit solutions, so
the construction of efficient computational methods is of great
importance. For example, Yuan and Mao[23] gave the
convergence of the Euler-Maruyama method for stochastic
differential equations with Markovian switching, Li et. al[24]
discussed the convergence of numerical solution to stochastic
delay differential equation with Markovian switching, Zhou
and Wu [25] investigated the convergence of numerical
solutions to neutral stochastic delay differential equations with
Markovian switching under the local Lipschitz condition.

However, to the best of our knowledge, there are not any
numerical methods available for stochastic partial differential
equations with Markovian switching. Inthis paper, we use the
recent mathematical technique on the stochastic population
system to estimate its numerical solutions . Some mathematical
results may be found in [26,27,28]. We shall extend the idea
from the papers [25, 29] to the numerical solutions for
stochastic delay age-dependent capital system with Markovian
switching. The main purpose of this paper is to investigate the
convergence of numerical approximation of stochastic delay
age-dependent capital system with Markovian switching under
the local Lipschitz condition. In Section 2, we shall collect
some basic preliminaries results which are essential for our
development and the Euler approximation analysis, and Euler
approximation is introduced. In Section 3, we give several
lemmas which are useful for our main results. In Section 4, we
shall show the main results that the numerical solutions will
converge to the true solutions to stochastic delay age-
dependent capital equations with Markovian switching under
the given conditions. In section 5, A numerical example is
provided to illustrate the theoretical results. Conclusion is
given in section 6.

Il.  PRELIMINARIES AND APPROXIMATION
Throughout this paper, let

V =H([0,A]) = {p| p < (O, A]),aa—f e L2([0, A)),

Whereaa—(pare generalized partial dervatives}.
X

V is a Sobolev space. H = L*([0, A]) such that
VoH=H >V.

Then V' = H ([0, A]) is the dual space of V . We denote

by |-| and |||| the norms in V , and V' respectively;

by <,> the duality product between V ,V', and by (-,-) the

scalar product in H . K is a real separable Hilbert space. For
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an operator B € L(K, H) being the space of all bounded

linear operators from K into H ,we denote by ||B||2 the
Hilbert-Scmidt normii.e.

|B|; =tr(BWB).

Let (€2, F,P) be a complete probability space with a
filtrations {Ft }tzo satisfying the usual conditions(i.e.,it is

increasing and right continuous while F, contains all p-null

sets). 7>0 and D:D(]0, A]x[-7,0];H) denotes the
family of all right-continuous functions with left-hand limits ¢

from [0,A]x[-z,0] to H . The space

D([0, A]x[-7,0]; H) is assumed to be equipped with the

norm |(0|D = sup |p(x)|- We also use
—7<x<0

D,EO ([0, Al x[—7,0]; H) to denote the family of all almost

surely bounded, F, -measurable, D([0, A]x[-z,0];H) -
valued random variables.

Let r(t),t > 0 ,be a right-continuous Markov chain on the
probability space taking wvalues in a finite state
S= {1,2,---, N} weth the generator I" = (7/ij)NxN given by

iA+o(A), if i=# j;
Pirt+At) = jr@) =i}=1 " ) N

1+7/ijA+O(A), if i=j,
where A > 0. Here y;; > 0 is the transition rate from i to | if
i % j while

7ij:_z7/ij-

i#j

We assume that the Markov chain r() is independent of
the Brownian motion W, .1t is well known that almost every
sample path of r(t) is a right-continuous step function with a
finite number of simple jumps in any finite subinterval of R™ .
Lot W =LP(0,AIX[0TL) |, LY =LP([0, A
<[0,T;H)

We consider stochastic delay age-dependent(vintage)
capital system with Markovian switching (2), where

f:SxL2 xD([0,A])x[-7,0]: H) = H be a family
of nonlinear operators, F, -measurable almost surely in t .
g:Sx L2 xD([0, A]) x[-7,0]: H) — L(K, H) is the

d
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family of nonlinear operator, F,-measurable almost surely in
t. K,=¢(a0)e D,EO([O, Alx[-7,0]: H). The integral
version of Eq.(3) is given by the equation

t OK t
K, =K, —jo aas ds—joy(a, s)K . ds

+ [ (), K, K )ds + [ a(r(s), K, K, )dW,

3)

here K, = K(a,1),K,_, =K(a,t—7).

Give a stepsize h € (0,1) , which satisfies 7 =mh for
some positive integer M , the discrete Markovian chain
rkh =r(kh),k =01,2,---,N can be simulated as follows:
compute the one-step transition probability
matrix p(h) .Letr,' =i, and generate a random number &,

which is uniformly distributed in[0,1] . Define

i1 i
i, if eS—{N} suchthat YR, (h)<& <> py,;(h),
j=1

h ij=1

e = N-1
N, if > Pi,, jhy<&
=

0
where we set Zj:l P,j(h)=0 as usual. generate

independently a new random number &,
uniformly distributed in [0,1] and then define

which is again

i, if i, eS—{N}such that

i1 i
= 2 Pos) <& <X p,(h),
j=1

i,j=1

N-1
N if ZPrlh'j(h)sgz
j=1

Repeating this procedure, a trajectory of {rkh K =1,2,---N}
can be generated. This procedure can be carried out
independently to obtain more trajectories. After explaining
how to simulate the discrete  Markov  chain
{rkh,k =12,--- N}. we can now define Euler-Maruyama

approximate solution for stochastic delay age-dependent
(vintage) capital system with Markovian switching (2). For
system  (2) the  discrete  approximate  solution

ont =0,h,2h,---Nh =T is defined by the iterative scheme
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K+l k_ath+1 _ h
Q" =Q 2a h ,u(a!tk)ch )

+ (), Q5 Q™ h+g(r,Qf,Qf ™AW,

with initial value Q° = K(a,0)=¢(a,0) on R, k>1
r! = r(kh),

Q“(0,1) = yAMF (L), | Q).

Here, Q‘; is the approximation to K(a,t,), th_m is the
approximation to K(a,t, —7) , for t, =kh , the time
increment ish =T /N <<1 , Brownian motion increment is
AW, =W (t,,,;) —W, . We first define two step functions

N-1
z,(t)= Zk:() th Lo esyny (8 5

Z,0=Y, Q% e ®. 6

_ _ N-1

r(t) = Zk:() N Liin csnph) t)
where 1 is the indicator function for the set G . t €[0,T]
then we define

t@Qs
K=K _IO oa

ds—.[;,u(a, s)Z.ds

+ [} £(F(9),2,(8), 2, (9))ds + [ (£, Z,(5). Z, (5))aW,.

(6)
we always assume that the following conditions aresatisfied:

(i) wu(a,t) is non-negative measurable in Q , ¥(t) and
A(t) are non-negative continuous in [0, T ] such that

O<uy, <pu@t)<pu<om, in Q,
Let y(t) <n;nis a non—negative contant;

A
where jo u(a,t)da = +oo.

(i) £(1,0,0) =0, g¢(i,0,0)=0,i€S;

(iii) (local Lipschitz condition) for any bounded set

D < H, there exists a positive constant K, (D) such that
X,yeD,ieS
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|f(i1X1! ) — f(i,%;, y2)|2 V”g(iixl’ Y1) —9(i, Xy, Y2)”§
<K (D)%, =" +[y, =¥, ):

(iv)

F(L,N)>0, (F(L0)=0), g—t >0,

0< * < F,, where F, is a positive consant.
oN

In an analogous way to the corresponding proof presented in
[30], we may establish the following existence and uniqueness
conclusion: under the conditions (i)-(iv), Eq.(2) has a unique

continuous solution K (a,t) on (a,t) € Q.
I1l.  SEVERAL LEMMAS

we will need the following result. As for r(t) , the
following lemma is satisfied (see [31]).
Lemma 1. Given h > 0, then rnh =r(nh),n=012,---is

a discrete Markovchain with the one-step transition probability
matrix.

P(h) = (P, () =€

Lemma 2. Under the conditions (i)-(iv), there are constants
k>2 and C, > Osuch that

E[sup|K,|* <C,.

0<t<T

Proof. Applying 1t6's formulato |Kt|k,we obtain

K.

|k

k-2
=|KO|k +Iék|Ks| <_86};S —u(a,s)K,, K, >ds

t k-2
k[ K| (F@r(s), Ky, K, ), K, )ds

FKIK (00K, KK )W,
k(k —2)
2

k k-2
S LK oK K, )

+

t k-4 2
[IK] K, atr(s), K, K, ))dw, |

2
st
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C ot 20K,
<Ko = [ KK, < 5K >ds
" k-2
—ku [ K| (K, K, )ds
" k-2
wk[ K (F(r(s). K, K, ), K, )ds

k(K] (@)K KK, )W,
L k(k-2)

t k-4 2
[IK] 1K, (). K, K )dw, |

ds

k t k-2
bl o K

Since

oK, t
<> K >=—[ K, (K,)

— 2V OAGIF(LE). [ K.da) - F(LE.OT

1, 6F(L,N)
< ZpyA= 7
2T N

2

1
)7 (f; K.da) < “AR7IK,|

A
where y € (0, IO K.da).

Therefore, by conditions (i) and (iii), we get that

k k
K[ <|Ko| + (AR ~2p)[[|K,| ds

¢ k-1
+kj0|Ks| | (r(s), K., K,_,), K|ds

FRLIK (0., K, ) K )W,
L kik-D)
2

t k-2 )
1K, ot K. K. pfEds

k k
<[+ (AR’ ~2u)[[|K,| ds

¢ K ¢ k-1
+KK (D) [ [K| ds+kK,(D)[ K| |K,_|ds

FRLIK (0., K )W,
L kik-D)

k-2
KD K,| (K" +[K, [

Now, it follows that for any t € [0, T]
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E(sup|Kt|k)
0<t<T
<EK,| += (AF177 — 241, + 2KK (D)
7
+4K (D))j E sup |K, | ds

—7<t<T

+KE sup j K, | (g(r(u) K,,

—7<s<T

Ky ), K,)dw,

Whence applying the Burkholder-Davis-Gundy's inequality to
the last term of (7) leads to

ELsup [[IK, " (0(rw), Ky K, ) K, )AW, ]

0<s<T

< 3E[sup|K5|

k/2

ds)l/Z]

([} (K| 190K, K,

<—E[sup|K 1+ 2K, K (D)I E[sup|K |“ ds]

0<s<t —7<8<

(®)

where K is a constant. Thus, it follows from (7) and (8)

E(sup|Kt|k)

0<t<T

< 2E|K,|* +k(AF7? —Z,uO + 2kK, (D) + 4K, (D)

+4kK, K (D))_[ E sup |K, | ds, Vte[0,T].
—7<r<s
Now, Gronwall's lemm a obviously implies the required result

with

KT| AFZ7? ~2410+ 2K, (D) +4K, (D) +4KK oKy (D) E|K |k
0

C,=2e

Lemma 3. Under the conditions (i)-(iv), there is a constant
C, > Osuch that
} 2’

where 7 is the stopping times defined by o = p A 0
p=inf{t>0:Q, € D},and 9 =inf{t>0:K, € D}

are the first time that Q, and K, leave a bounded region

|: Sup |QtAT

—7<t<T

D respectively . We will define D more precisely later.
Proof. From (6), one can obtain
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oQ
dQ, = ——tdt— u(a,t)z,(t)dt
Q = dt-uanz, o

+ T (F(0), z,(1), 2, (O))dt + g(F (1), 2, (1), 2, (1)) dW,

Applying 1t6's formulato|Qt|2 yields

Q|

=1, + 2j;“’< —%dt - u(a,t)z,(t),Q, > ds
27 (F(F(0), 2,0, 2,(1)),Q,)ds

+2[ " (9(F(©),2,(1),2,(1)),Q,)dW,

+2[ 1 9(F($),2,(0),2,®) I s

Therefore, we get that

Quo|” <1Q|" + % AF,2n? ﬂ“’ps ds
11O, 2,0, 2,0) F ds
27" |Q) l(lds + [ [0, s
[0S, 2.0), 2, @) I ds

+2[7(Q. 9((8),2,(0), 2, )W,

Now, it follows that for any t €[0,T]

E(sup|Q,.,|)

0<t<T

2 1 2 2 _ tac 2
<EQ" + (AR +2m+DEsup [[Q,| ds

o<t<T *°

+E sup j; E|f (F(s), 2,(s), zz(s))|2ds

0<t<T

+Esup [ "E[a(F(s).2,(5).2, (s))||2ds

0<t<T

+2E sup [ (Q,,9(F(5),2,(5), 2, (s)AW..

0<t<T
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Using condition (iii) yields

E(sup|Q...|")

0<t<T

2 1 ) _ tac 2
<EIQu[ + (AR +2p+DEsup []Q[ ds

0<t<T

+2K, (D)Esup [ (12,(5) [F +12,(s) [*)dls

0<t<T

+2E sup [ (Q., 9(F(5),2,(5), 2, (5)AW..

0<t<T

(10)

By Burkholder-Davis-Gundy's inequality , we have

Esup [ (., 9(7(5).2,(5). 2, ()W,

0<t<T

<3E[sup |Q,,,, (|| “119(F($),2,(5).2,(5) |12 ds)""*]

0<t<T

1
S Z E[Sup | QtAO’ |2]

0<t<T

+ Ky [ I0(F(9),2,(5),2,(5) | ds)

1
< Elsup|Q, °]

0<t<T

+K K D) TE(2,(5) P +12,(5) [P)ds

1
< Elsw Q. ]

0<t<T

+K, K, (D)[ E( sup Q(s) [*)ds.

—-7<U<taoc
(11)
For some positive constant K, >0. For Vt €[0,T], it
follows from (10) and (11)
2
E sup [Q,.,|

—7<t<T

<2E|Q, |” +2(AFn? + 2 + 2K, (D)
+2K,K, (D) +D)[ E sup |Q

—7<t<s

|*ds

rno

Applying Gronwall's lemma, Vt € [0, T] one can get

42



International Journal of Computer and Information Technology (ISSN: 2279 — 0764)

E sup |Qw|2

—7<t<T

2.2 5
< 2e2(AF1 n +2y+2K1(D)+2K1K1(D)+1)E | Qo |2: Cz-

The proof is finished.
Lemma 4. For anyt € [0, T], there are constants C, >0

and C, > 0 such that

EI;I f(F(s),2,(),2,(5)) = F(r(s),2,(5), 2,(s)) I’ ds
<C,h+o(h);
EI;II 9(F(s),2,(5), 2,(s)) = F(r(5),2,(s). 2,(s)) I3 ds
<C,h+o(h).

The proof is similar to that in [25].
Lemma 5. Under the conditions (i)-(iii), there are constants

C, >0 and C,such that

E sup|Q, - z,(t)|" < Csh; (12)
0<t<T
E sup|Q., —2z,(®)|" <C;h. (13)

0<t<T

The proof of this analogous to that in [24]

IV. MAIN RESULTS

Now we are in position to establish the following main
results.
Theorem 6. Under the assumptions (i)-(iv), then

E sup|K, — Q" < C, (D)h+o(h). (14)

0<t<T
Proof. By the definitions of K, and Q, , we have

Kt _Qt

_ I‘Mds ~ [ u(a s)(K, - z,(s))ds
0 oa 0

FLEEE)K, K, ) - F(F(),2,(5). 2, (5)ds
L (O(r(9).K, K, ) = 0(F(),2,(5), 2, (5))dW,.
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Therefore using 1t0’S formula, along withthe Cauchy-
Schwarz's inequality yields,

d | Kt _Qt |2
= 2<|<t —Qt,M>dt

oa
—2(K, = Q, (@, t)(K, ~z,(s))dt)
+2(K, = Q,, f(r(t), K, K ) = £(r(t), z, (1), z, (1)))dt
+1g(r(t), K, Ko) = 9(r(t), 2, (1), 2, () II; dt +
2(Kt _Qt’(g(r(t)! Kt’ str)
—g(r (1), z,(t), 2, (1)))dW, )

forany t, €[0,T],
E sup | st\a _st\a |2

sef0,4]

< (AF2n? +ﬁ+1+2K2)j;“’ E sup |K, -Q, |2

te[0,4;]

+ ZﬁE.[OwE sup | K, —z,(s) |’ds

te[0,4]

+Esup | [ (F(r(s).K,. K, )

se[0,t;]
~ 1 (7(),2,(5), 2, (s)))ds |
+Esup [ 1 g(r(s). K, K, ,) (15)

sef0,t;]

— g(F(5), (), 2,(S))II2 ds
+2E sup [ (K, ~Q,.(g(r(s). K, K, .,)

sef0.t]
—9(r(s), 2,(5), 2, (5)))dsW ).

By Lemma 4, Lemma 5 and condition (iii), one gets

E sup J';m| (f(r(s),K,,K,.)

te[0,,]
~ £ (F(8),2,(5), 2,(s)) [ s
<2E[I(F(r(s) K, K.

= f(r(s),2,(5),2,(s)) | ds
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+2E[1(F(r(),2,(5),2,(9))
— f(7(s),2,(s),2,(s)) |* ds

< 2K, (D)E[ (K, ~2,(9)F +| K, —2,(5) [)ds
+2E[ 71 (£(r() 2,(5). 2,(5))
— (r(s),2,(s),2,(s)) |” ds

< 4K, (D)E[ E[sup | K, -Q

uel0,s]

+ 2K, (D)(C; +C;)h+2C,;h +o(h).

| ds

uno

(16)
Similarily

E sup [11(9(r(s). K, K,.,)

tef0,]
~9(F(s),2,(5), 2, (s)) II; ds
<4K,(D)E[' E[sup |K,,, ~Q,, [* ds

uel0,s]

+ 2K, (D)(C, +C4)h+2C,h+o(h).

(17

By Burkholder-Davis-Gundy's inequality, we have

E sup I;M(KS —-Q,.(g(r(s), K, K_,)

tef0,4 ]

—g(r(s),z,(s), 2,(5)))dsW,).
S%E[sup K, —Q, I’] (18)

o<t<t,

.
+4K K, (D)[ E[sup|K,,, -Q

o<t<t;

+ 2k, K, (D)(Cy +C¢)h +2K,C,h +0o(h)

I” ds

unp

where K, and K, are positive constants.
Therefore inserting (16)-(18) into (15) has

E sup | K, ~Q [<M,[ Esup|K, ~Q, [ds
te[0,T] 0 ref0,s]

+M2h+o(h)+%E sup | K, -Q, |°,

ref0,T]

where
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M, =
(AFn? +31 +1+ 2K?* + 8K, (D) + 8k, K, (D)),.

M, =2(uCys +C; +C, + 2K, (D)(C; +Cs)
+ 2k, K, (D)(C, +C,) + K,C,).

On applying Gronwall inequality we can obtain a bound of the
from

Esup | K, —Q, |’< 2M,e*"h+o(h)

0<t<T

The result then follows with C, = 2M e,

It is easy to deduce that the following theorem is satisfied. To
proceed further we define the bounded domain

D=D(r)= {y e G such that |y|2 < r}

It is easy to deduce that the following theorem is satisfied.
Theorem 7. Under the assumptions (i)-(iv), the numerical
approximate solution (6) will converge to the exact solution to
Eq.(2) in the sense then

lim E| sup | K, -Q, |2} =0 (19)

At—0 l:OstST

Theorem 8. If @ is the first exist time of the solution K, to
equation (3) from the domain D(r) ,then the probability

PO=T)21-¢.

Proof Whence applying Lemma 2 leads to

E[sup | K, |ZJ <C,.

0<t<T

On noting that |K6.|2 =r ,since K, is on the boundary of

D(r), the probability P(€ <T) can now be bounded as
follows.

C, 2 E[K, |12 E[[K,|* 1 oy (@)]

(20)
> rE[l oy (@)] 2 TP(0 <T)

whence rearranging (20) leads to
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PO<T)<C,/r=¢. (1)

Here I can be made as large as required, for a given T
and K,, to accommodate any & e (0,1) . Theorem 7 is
proved.

We note that the following useful result follows directly
from Theorem 8.

Lemma 9. let @ be the first exist time of the solution K, to
equation (2) from the domain D(r) , and let conditions (i)-(iv)
are satisfied, then the limit of limD(r)=G and, for

r—oo

te[0,T]and K, € G , K, remains in G . Furthermore,
K, is the unique solution of equation (2) ont € [0, T] for all

finite T .
Proof of this result can be found in paper of Mao[32].

We require a similar result to Theorem 10 for the Euler
approximate solution Q, .
Theorem 10.
approximate solution (6) from the domain D(r) . Suppose

let o be the first exit time of the Euler
conditions (i)-(iv) are satisfied, then (for sufficiently small h)
probability

P(p>T)>1-eM,
where M is a constant.

Proof Noting that Q, is the solution to (6), and apply
Lemma 3 leads to

E[Q,.| 1=C,.

An argument analogous to that used to prove Theorem 2 can
now be used to bound P(p <T) Since Q, is on the

2
boundary of D(I) then ‘Qp‘ =T which leads to

C, 2 rE[l,.,(@)] 2 rP(p <T).

Rearranging this inequality reveals that

P(p <T) < Me,

where M =C, /C,, g is defined in equation (21).

The significance of Theorem 8 and Theorem 10 are that
both K, and Q, remain within the domain D(r) and
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therefore by Theorem 7 the Euler scheme will converge to the
K., with probability

Pe<T)<P(p<T)+P@<T)<@+M)e. (22

Theorem 11 . let G be an open subset of H , and denote the
unique solution of (2) for te[0,T] given K, €G
by K, € G. Define Q, as the Euler approximation (6) and let
D < G be any bounded set. Suppose conditions (i)-(iv) are

satisfied. Then for any &, >0 there exists At” > Osuch
that

P(sup|Q, — K, > 8) <,

0<t<T

provided h < At™ and the initial value K, € G..
Proof of this result can be found in paper of Mao[32].

V. AN EXAMPLE

In this section we shall discuss an example to illustrate our
theory.

Example. Let W, be a scalar Brownian motion. Let r(t) be a

right continuous Markovian chain taking values in S = {ZLZ}
with the generator

-1 1
Fz(?’ij)zxz :{2 _2}-

Of course W, and r(t) are assumed to be independent. Let us
consider a stochastic delay capital system of the form

oK (a,t) N oK (a,t)

ot . oa
=2 (1-a)? K(a,t)
+ f(r(t),K(at),K(a,t—7))dt
+g(r(t),K(a,t),K(a,t—7))dw, (23)
t+1

K(at) = eXp(—m),

K(0,t) = 7 (t)A(t)
r(0)=1

A —2t)2 [ K(@atyda
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Here T=1 , =01 , (at)e(01)x(0,T) |,
(a,t) e (0)x[-0.1,0], H = L*([0.1]) .V =W, ([0,.1])
(a Sobolev space with elements satisfying the boundary
conditions above),

1 2
u(@,t) = Zm, L(t) = -2 ADAL =2 ,
1 2 1
FILO. K @Dda) = =7 [ K@ da

f(,K(at),K(at—7))=-K(at)+K(at-1)),
f(2,K(a,t),K(a,t—7)) =cos(K(a,t))+ K*(a,t —7)

and

gL, K(at),K(a,t—7)) =sin(K(a,t)) + 2K(a,t — 7),
g(2,K(a,t),K(a,t—7)) = K?(a,t) + 2K (a,t — 7),

Ko (@) = exp(—ﬁ).

It is easy to verify that the conditions (i)-{(iv) are satisfied.
Then, the approximate solution will converge to the true

solution of (23) for any (a,t) € (0,1) x (O,t) in the sense of
Theorem 10.

Obviously, K(a,t)in (23) cannot be solved explicitly. It is

necessary to know the numerical approximation Q(a,t) of

K(a,t) . Take h=0.0005, Aa=0.05. Fig.1 is

numerical simulations of the stochastic age-dependent capital
system with Markovian switching (24) with 1000 experiments,
where

K@D =EQ@D =1 Q)

It clearly reveals the age-dependent capital system tendency.

VI. CONCLUSION

Some important sources of uncertainty may be
discontinuous, recurrent, and fluctuating. Such significant
events include innovations in technique, introduction of new
products, natural disasters, and changes in laws or government
policies. The relationship among these events and the
profitability of risky assets can be wvery complicated.
Furthermore, there can be numerous events and economic
variables that are potentially related to the profitability of risky
assets. In order to describe this situation, we introduce a class
of stochastic age-dependent capital dynamic system. To the
best of our knowledge, there are not any numerical methods
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available for stochastic partial differential equations with
Markovian switching. Thus, numerical approximation schemes
are invaluable tools for exploring its properties.

In this paper, we extend the idea from the papers [25,29] to
the numerical solutions for stochastic delay age-dependent
capital system with Markovian switching. Using the recent
mathematical technique for the stochastic differential
equations, this paper investigates the convergence of numerical
approximation of stochastic delay age-dependent -capital
system with Markovian switching under the given conditions.
The paper obtains the condition that can ensure that the
approximate solution will converge to the true solution for
stochastic delay age-dependent capital system. At the same
time, we propose the numerical solution for stochastic delay
age-dependent capital system with Markovian switching. The
approach is based on constructing a discrete-time
approximation to exact solution by consider the jump time. An
example has been given for illustration of our theory.
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Fig.1 numerical simulations of the stochastic age-dependent capital system with Markovian switching
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