
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 01– Issue 02, November 2012 

 

www.ijcit.com     103 

 

Identification of linear system in random time 
 

Edward Kozłowski 

Department of Quantitative Methods 

Technical University of Lublin 

Lublin, Poland 

e.kozlovski@pollub.pl 

 
Abstract— In order to intelligent control in future the system 

should be tested. The classical tasks of identification are modeled 

(realized) for established number (interval, horizon) of test. In 

this paper the above problem is investigated for a random 

interval. To identification was used a conditional entropy, which 

represents a measure of system uncertainty. Additionally in this 

case the horizon is modeled by a random variable with a finite 

number of events. The general aim of control is the system 

identification at minimum cost. This problem is reduced to the 

task of optimal control with established finite horizon. 
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I.  INTRODUCTION  

The problems of adaptive control, active learning, system 
identification and understanding, image recognizing are widely 
described in the literature (the first publications appeared half a 
century ago [2], [7], [10], [11]). To control, manage, steer, 
operate effectively, one should get to know the dynamic 
properties of system or object. Sometimes the system 
parameters are not known, thus making the tests they should be 
identified as accurately as possible. The most problems of 
input-output systems identification are based on a finite 
number of experiments, tests (see e.g. [1], [3], [5], [9], [13], 
[15], [16], [17). For the determined number of tests these 
problems are reduced to the classical task of adaptive control. 
The optimal control process in this case has a dual nature - 
optimization of performance criterion and increasing 
information about the unknown parameter of the system. 

Sometimes the environment does not allow us to make a 
established number of tests or the time of system working 
(functioning) is not fixed exactly due to the changing 
conditions (for example in different weather conditions the 
ship, object travels this same distance (route) at various time 
intervals). The question arises how to control the system for a 
random horizon states independent? How to make the task and 
the set of control laws if the horizon is not known? 

In the considered case the system dynamic is known but the 
system parameters and the control horizon are unknown. To 
identify the system the conditional entropy was used. The aim 
of control is to minimize the costs of control (learning) and 
losses associated with ignorance of system, which depend on 
the conditional entropy of the system parameters. The horizon 
of control is modeled by a random variable state independent, 
but the parameters are modeled by a random vector. The 

solving of this problem is based on the construction of 
substitute task with the finite horizon, where the functionals of 
losses and heredities must be modified (see e.g. [6], [12]). In 
both cases (primary and auxiliary problems) the aim of control 
is the same but has different forms. 

The organization of paper is as follows. The section 2 
presents the problem of optimal control with random horizon 
and the reducing it to the task with established horizon. The 
conditional entropy is given in sections 3. The optimal control 
for systems identification with costs is provided in next 
sections suitably. The simple controls application of the 
proposed approach is illustrated on two examples.  

II. OPTIMAL CONTROL IN RANDOM TIME 

A. Problem formulation 

Let us consider the adaptive control problem at random 
time. The objective function determines a sum of costs of 

control and heredity. Let  PF,,  be a complete probability 

space. Suppose that ,..., 21 ww  are independent 

m dimensional random vectors on this space, with normal 

 mIN ,0  distribution, let 0y  be an initial state with 

distribution  0dyP ,   be a system parameters with a'priori 

distribution  dP  and   be a random horizon with the same 

discrete distribution  dP . We assume that all the above 

mentioned objects are stochastically independent. On 

 PF,,  we define a family of sub-  -fields 

 jiyY ij ,...,1,0:   and    jj YY . 

We will consider the control problem for a system with 
state equation 

    11 ,,   jjjjj wyuyfy    (1) 

where 1,...,1,0  Ni , 
n

i Ry  , 
nlkn RRf :  and 

 mnMRn ,:  , where  mnM ,  is the set of  mn  

matrices. The functions ,f  are assumed to be continuous in 

all their variables. A jY  -measurable vector 
l

j Ru   will be 

called a control action, and  ,..., 10 uuu   an admissible 

control. The class of admissible controls is denoted by U . The 
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random variable   presents the horizon of performance 

criterion and has discrete distribution   ipiP  , where 

10  ip  and 1
0




N

i

ip . 

To specify the aim of control, we introduce same functions 

RRRg ln :  and RRRh ilin
i  :  which are 

continuous and bounded. The objective function has a form 

     







 







1

1

100 ,...,,,...,,




i

ii uuyyhuygEuJ      (2) 

where   0, 11  uyg  and  0,...,01 colu  . At any time 

10  j , which is not a horizon of  control, we take the 

control ju , and at time   we do not take the control but only 

calculate the value of heredity function. In present case the 

system (1) can be stopped at time 0 , then we calculate 

only value of heredity function. 

The aim of optimal control is to minimize the objective 
function, which is a sum of costs and heredity. Then the task is 
to find 

 uJ
Uu

inf     (3) 

and to determine a sequence of admissible control 

 *
1

*
0

* ,...,  uuu  for which the infimum is attained. 

B. Transformation of task with random horizon to task with 

deterministic horizon 

This part of paper presents the transformation of task with 
random horizon to task with deterministic horizon. Using the 
definitions of conditional probability and condition expectation 
the composite costs functional (2) we can present as 

     

          

     

   

   









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



















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



























N

i

iii

N

i

ii

N

i

NNNii

i

ii

iPuuyyh

iPuygE

uuyyhuygENP

uyyhuygEPyEhP

uuyyhuygEuJ

0

100

1

0

1

0

100

0101000

1

1

100

,...,,,...,           

,

,...,,,...,,...

,,,10

,...,,,...,,













 

Finally, the above mentioned functional can be presented as  

   



N

i

iii uuyyEuJ
0

00 ,...,,,...,   (4) 

where 

 

       iPuuyyhiPuyg

uuyy

iiiii

iii





 



100

00

,...,,,...,,

,...,,,...,
    (5) 

for Nj ,...,1,0 . From distribution of random horizon   we 

see that   0 NP  . Therefore, we substitute the task of 

optimal control with random horizon of finite number of events 
(3) for the task of optimal control with finite horizon 

 




N

i

iii
Uu

uuyyE
0

00 ,...,,,...,inf    (6) 

The expected value of objective function is the same, but 
the designing of optimal control for task with established 
horizon is easer. Below we consider the auxiliary 
(replacement) task (6) to design (made) the optimal control of 
system (1) with random horizon  . 

Corollary 1. If   0 jP   for 1,...,1,0  Nj  and 

  1 NP   we have a classical adaptive control problem 

with fixed horizon. Suffice in formula (2) to put N . 

Theorem 1.  Suppose, that the functions j , Nj ,...,1,0  

are continuous and bounded, f  and j  are continuously 

differentiable and      0det yy T  for 
nRy . If 

*u  is 

an optimal control of problem (6), then 

 

 

    

       0,,

,,,...,,,...,

,...,,,...,

,...,,,...,

*1

*
1

1

**
00

1

**
00

**
00











































jjjuj
T

j

T

jjj

N

ji

iii

N

ji

iiiu

jjju

Yuyfyy

uyfyuuyy

uuyy

uuyyE

j

j

j









    (7) 

for  1,...,1,0  Nj , where  jYXE  denote the conditional 

expectation of X  given jY . 

The proof of above theorem can be seen in [4] 

III. CONDITIONAL ENTROPY 

Let the density of the normal distribution  QN ,  be 

denoted by 
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 
   

   







  


 xQx

Q

Qx
T

m

1

2

1
exp

det2

1
,

(8) 

Definition 1. In information theory, the entropy is a 
measure of uncertainty (a measure of unpredictability) 

associated with a random variable (vector)   and calculated 

as 

    pEH ln  

where  p  means a density of random variable (vector)  . 

Let      yyy T . The density of the joint 

distribution of  iyyy ,...,,, 10  for the dynamic system (1) is 

given by 

 

      1111101

10

,,,,...,,,  

,...,,,

 



iiiiii

ii

yuyfyyyy

yyy




   (9) 

where 

     0000 , yppy      (10) 

and  p ,  0p  are the a`priori densities of the random vector 

  and the state vector 0y  respectively. Thus 

 

        


 



i

j

jjjj

ii

yuyfyypp

yyy

1

11100
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,,,    

,...,,,





 (11) 

The distribution of   conditioned on the  field iY  is 

   

 


dxyyyx

yyy
yyy
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,...,,,

,...,,,
,...,,
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10
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
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  

      

       




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
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

dxyuyxfyp

yuyfyp

i

j

jjjj

i

j

jjjj

1
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1

111

,,,

,,,





        (12) 

The conditional entropy of random vector   based on states 

observation  Nyyy ,...,, 10  

   
   NN

NNN

yyyHyyyH

yyyEYH

,...,,,...,,,         

,...,,ln

1010

10








      (13) 

We see, that the above entropy is the difference between joint 
entropy of system and entropy of states system. 

Corollary 2. If the system has a linear form 

      1211 ,,   iiiiiii wyuyfuyfy   (14) 

and the random vector    has a normal distribution  QN ,  

(we assume that ,, 21 ff  are continuous in all their 

arguments, bounded and the matrix 
T  is non-singular) 

then, using the filtration of conditionally normal sequences (see 

e.g. [14]) the conditional distribution  NYdP   is 

 NN QN ,  where 

     

      




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
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
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
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N
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T

N

i
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T

N

uyfyyuyfQ

uyfyuyfQI





     (15) 

and 

      QuyfyuyfQIQ
N

i

iiiii
T

N

1
1

0

2
1

2 ,,















        (16) 

Thus, the condition entropy of random vector   based on 

states observation  Nyyy ,...,, 10  and controls 

 110 ,...,, Nuuu  of system (1) is 

     
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Q
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Finally 
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
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T

m

N

uyfyuyfQQ
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(17) 

Corollary 3. The conditional covariance matrix jQ  for 

1j  given (16) can be written in dynamical form 

       QuyfyuyfQQQ jjjjj
T

jj

1

1121
1

112
1
1 ,,








   

with QQ 0 . 
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IV. OPTIMAL IDENTIFICATION OF LINEAR SYSTEM 

WITH CONTROL COSTS 

Let us consider the case, where the system (1) must be 
identified at lowest cost. The cost of control (energetic cost) in 

each step is described by a function  ii uyg ,  but the joint 

costs of uncertainty and heredity (e.g. costs of losses associated 
with instability, no hit to the target,...) are calculated as 

  ii YHy  , . The total cost must be minimized. In case 

where horizon of control   is random, the task 

    
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i
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is reduced to replacing task with deterministic horizon 
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,,inf
1
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The necessary condition of optimal control of system (1) 
for auxiliary task (19) is given below. 

 

Theorem 2. Suppose, that the functions g  and   are 

continuous and bounded, f  and   are continuously 

differentiable and   0det  y  for 
nRy . If 

*u  is an 

optimal control of problem (19), then 
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for  1,...,1,0  Nj , where for ij   
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and  l
jjj uucolu ,...,1 . 

 

Corollary 4. If as the identification measure of unknown 
parameters is conditional entropy , then for the systems (14) 

with constf 2  there is no active learning. In this case there 

is passive learning, the parameters are identified by only 
observing system states and the conditional entropy does not 
depend on controls. The effect of active learning occurs when 

we can influence to component  uyf ,2  dependent on 

system parameters (the conditional entropy depends on the 
controls). 

Example 1. Let the system be described by a state equation 

11   jjjj wuyy    (21) 

where Ruy jj ,  and random parameter   and disturbances 

jw  have the normal distribution  3,2N  and  1,0N  

respectively. The horizon of controls is random and system can 

be stopped at moments  9,...,1,0  thus the controls can be 

realized at steps  8,...,1,0 . Let the performance criterion rely 

on minimizing the sum of controls costs and cost associated 

with ignorance of parameter  , thus the task is to find 
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where  ,  are the weights of costs. We replace the task (22) 

by 
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It can be seen, that the objective function is sum of expected 

costs directly related with controls  





1

0

2
N

j

j jPu   and 

additional costs (losses) of ignorance of system parameter, 

which is calculated as    



N

j

j jPYH
0

 . The conditional 

entropy of   is determined as 
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Let the weights of costs are 1  and 2 . The table 

presents the optimal control for different distributions of 
random horizon  . In I case the random horizon    has an 

uniform distribution   1.0 jP   for 9,...,1,0j  and in 
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II, III, IV cases has the binomial distributions with probability 

of success 5.0p , 7.0p , 1p  respectively. 

In the present case the task is only to minimize the costs of 
controls and losses. The table 1 shows dependencies between 

controls and distribution of random horizon. In case IV 1p  

we have got a situation, where the horizon of control is 
deterministic 

 









91

8,...,1,00

j

j
jP    (23) 

TABLE I.  THE CONTROL VALUES FOR RANDOM AND FIXED HORIZONS. 

j  Case I Case II Case III Case IV 

0 -0,814121709 -0,816045733 0,81530348 0,272165477 

1 -0,076425343 -0,024357097 0,033712934 0,272165477 

2 -0,007104012 -0,008187008 -0,02610353 0,272165477 

3 0,006292596 -0,009894085 -0,010232461 0,272165477 

4 0,002217472 0,000339139 0,004575022 0,272165477 

5 -0,015402668 0,002197519 0,000147496 0,272165477 

6 -0,047301927 -0,005335869 -0,004888392 0,272165477 

7 -0,081903266 0,028629496 0,000144546 0,272165477 

8 0,00146286 0,009621932 0,000957314 0,272165477 

 

It can be seen, in cases I, II, III with random horizon the 
control values are higher at the beginning and successively 
decrease in following moments, whereas in case with fixed 
horizon the control values are evenly (uniformly) distributed. 

 

Figure 1.  The expected total cost. 

 

The figures 1, 2, 3 present the expected total costs, the 
expected costs of control and the expected losses (costs) related 

with ignorance (unknown) of system parameter   dependent 

on probability of success 10  p   where 1 , 2  and 

the random horizon   has a binomial distribution. 

 

Figure 2.  The cost of control. 

 

 

Figure 3.  The cost of ignorance of system parameters. 

It can be seen, with increasing the probability of success p  

(it entail that the expected horizon of control increases) the 
total costs and losses (additionally costs measure by the 
conditional entropy) are decrease but expected control costs are 
increase. In this case the greater impact on total cost has the 
conditional entropy. 

Example 2. In the case of construction tasks for the system 
parameters identification without taking into account the costs 
of control the optimal control values may be unrealistic, 
impossible to achieve through the technical systems. For 
example, to minimize only the conditional entropy without 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 01– Issue 02, November 2012 

 

www.ijcit.com     108 

 

costs of control for a case with random horizon we determine 
the task 

 
 



YEH
uuu ,...,, 10

inf  

which can be replaced by 

 
    







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inf
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N

  

For the case with deterministic horizon the distribution is (23). 
For the system (21) in both cases the performance criterion is 

satisfied if the optimal controls ju  for 

1,...,1,0  Nj . 

V. CONCLUSION 

In this article, the identification problem of stochastic 
discrete-time linear system for random horizon was introduced 
and the optimal control laws were worked out. The random 
horizon was modeled by random variable at finite number of 
elementary events. The described problem was reduced to 
optimal control task with finite horizon. The aims of control for 
primary and substitute tasks are the same. Additionally, the 
simple example shows that the optimal control of stochastic 
system identification in random and fixed time intervals are 
different. Thus, to design the identification of linear system for 
random time we can not make directly a task with establish 
horizon, necessarily we must modify a composite costs 
function. In the task of identification without costs of control 
the attention should be given to situations where control may 
be unlimited. 

The extension of described problem can be used for 
example to system image recognition, diagnosis etc. in random 
time interval. 
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