
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 25

Analysis of Different Programming Primitives used in

a Beowulf Cluster

Mohamed Faidz Mohamed Said, Saadiah Yahya

Faculty of Computer & Mathematical Sciences

Universiti Teknologi MARA

40450 Shah Alam, MALAYSIA

faidzms@ieee.org, saadiah@tmsk.uitm.edu.my

Mohd Nasir Taib

Faculty of Electrical Engineering

Universiti Teknologi MARA,

40450 Shah Alam, MALAYSIA

dr.nasir@ieee.org

Abstract—Beowulf cluster computing has been widely utilized

by exploiting the commodity aspect of its hardware and also

the open codes of its software. The implementation of message-

passing within this kind of computing is performed via the

explicit primitives. Basically, these explicit primitives are

divided into two programming types; blocking and non-

blocking communications. The effects of using these different

primitives on this cluster computing have not been explored in

details. This research project proposes a measurement method

to empirically look into this effect and how it characterizes the

operation of a task. The scope of this research is a collection of

four computers that are connected to a switch via a network.

Each computer is installed with Linux operating system and

MPICH library software. Effects of the programming

primitives are measured by a program in C language. The

project outcome will offer comparison of the effect of different

library routines. Application programmers can exploit this

information to produce a better application on this Beowulf

computing architecture.

Keywords- cluster computing; primitives; MPICH

I. INTRODUCTION

Beowulf computing is currently one of the parallel
computing architectures that has been used extensively either
in the teaching, industrial and commercial sectors. This class
of computing is formed by a collection of more than one
computer that are linked via a network. The success of this
computing architecture is in general due to the exploitation
of its physical commodity components that are easily
available in the market. On top of that, the software
employed by this type of computing are open codes that can
be freely downloaded from the public domain. There are
some programming concepts that are being utilized by
programmers in coding application. These concepts are
multiprogramming, shared memory, data parallel and
message-passing. In message-passing architectures, each
computer is regarded as a building block. This building
block viewpoint makes it easier to develop and scale
compared to the shared memory perspective.
Communication is through explicit input/output (I/O)
operation and not inserted into the memory system. This
message-passing scheme has similarity with the network of
workstations, but its usage in Beowulf computing has a
stronger integration between the processor and network.

Historically the goal of achieving performance through
the exploitation of parallelism is as old as electronic digital
computing itself which emerged from the World War II era.
Many different approaches have been devised with many
commercial or experimental versions being implemented
over the years [1]. Parallel computing architectures may be
codified in terms of the coupling and the typical latencies
involved in performing parallel operations [2, 3]. The eight
major architecture classes are systolic computers [4], vector
computers [5], single instruction multiple data (SIMD)
architecture [6], dataflow models [7], processor-in-memory
(PIM) architecture, massively parallel processors (MPPs) [8],
distributed computing [9] and lastly commodity clusters [10,
11]. Commodity clusters may be subdivided into four classes
and they are Superclusters, Cluster farms, Workstation
clusters and Beowulf clusters. Beowulf clusters incorporate
mass-market PC technology and employ commercially
available networks such as Ethernet for local area networks.
Thus, these characteristics are entirely unlike in a traditional
parallel computer where it is built of highly specialized
hardware and the architecture is custom built. The term
Beowulf cluster refers to a set of regular personal computers
(PC) commonly interconnected through an Ethernet. It
operates as a parallel computer but differs from other parallel
computers in the sense that it consists of mass-produced
commodity off-the-shelf (COTS) hardware.

Recently, a rapid increase in the use of this Beowulf

clusters can be observed and this is due to mainly two

reasons. Firstly, the magnitude of the PC market has

allowed PC prices to decrease while sustaining dramatic

performance increase. Secondly, the Linux community [12-

24] has produced a vast asset of free software for these

kinds of applications. Beowulf clusters emphasize no

custom components, no dedicated processors, a private

system area network and a freely available software base.

Cluster computing involves the use of a network of

computing resources to provide a comparatively economical

package with capabilities once reserved for supercomputers.

One of the initial work in developing a Beowulf cluster is

carried out by Andersson [12] at the Department of

Scientific Computing, Uppsala University, Sweden. On the

architectural perspective, the Beowulf cluster can be divided

into two types of variants.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 26

The first is the rack-mounted system and the second is the

bladed system. Firstly, the rack-mounted system is a

collection of individual system units placed together and

this study uses this type of implementation. An example of

this rack-mounted system is shown by Fig. 1 where it

demonstrates a typical home-built Beowulf cluster [25].

Fig. 1. A 52-node Beowulf cluster [25]

Secondly, the bladed system is a collection of individual

motherboards put together within the close vicinity, like in

computer laboratory. An example of this bladed system is

demonstrated by Fig. 2 where it exhibits a 52-node Beowulf

cluster [25] used by the McGill University pulsar group to

search for pulsations from binary pulsars.

Fig. 2. A home-built Beowulf cluster [25]

An example of this type of implementation is done by

Feng [26]. He presents a novel Beowulf cluster named

Bladed Beowulf which is originally proposed as a cost-

effective alternative to the traditional Beowulf clusters. In

his later work, Feng [27] also introduces this Bladed

Beowulf and its performance metrics.

Generally, there are many reviews on the preliminary

works and discussions in many aspects of the cluster

variants. These reviews and discussions include [28], [29],

Underwood [30], Kuo-Chan [31], Yi-Hsing [32] and Farrell

[33]. Uthayopas discusses the issues in building powerful

scalable cluster [34] and also proposes system management

for the Beowulf cluster [35]. Stafford [36] discusses the

legacy and the future of Beowulf cluster with its founder,

Donald Becker. Recent years have shown an immense

increase in the use of Beowulf clusters [12, 37]. Their role

in providing multiplicity of data paths, increased access to

storage elements both in memory and disk and scalable

performance is reflected in the wide variety of applications

of parallel computing, such as Slezak [38], Yu-Kwong [39]

and Chi-Ho [40]. The research works cover both the two

memory architecture, namely the shared memory and the

message passing. Most of the researches on the later

memory architecture are based on the MPICH, a software

written by Gropp and Lusk from the Argonne National

Laboratory, University of Chicago [41]. The comparison

between the message-passing and shared address space

parallelism is presented by Shan [42]. For the benchmark

segment, two microbenchmarks that analyze network

latency that more realistically represents the way that MPI is

typically used is presented by Underwood [43]. For

comparing the communication types, the work is done by

Coti [44] who presents scalability comparisons between

MPI blocking and non-blocking check-pointing approaches

and Grove [45] who presents tools to measure and model

the performance of message-passing communication and

application programs. He also presents a new benchmark

that uses timing mechanism to measure the performance of a

single MPI communication routine. From the numerous

reviews made, most of them deal with the issues of the

computer communication techniques, computational

complexity of scheduling and operating system. Most of

these works also focus on the communication latency and

load among the networked machines. The network latency,

the delay caused by communication between processors and

memory modules over the network has been identified as a

major source of degraded parallel computing performance.

However, these researches have not ventured into the role

and effect of the programming primitives used in the

application software itself. The analysis on the effect of

utilizing different communication primitives based on

different data sizes should provide useful information

concerning the performance characteristics of pertinent

parallel programming codes within the clusters of PC.
This research gap requires detailed analysis by using a

new method. Therefore, this research project empirically
attempts to look into this effect and how these primitives
characterize the operation of task, other than the completion
time. The scope of this research is a collection of four
computers that are connected to a switch via a network. Each
computer is installed with Linux operating system and
MPICH library software. Effects of the blocking and non-
blocking communication primitives are measured by a
program in C language which provides information of the
time and rate.

This paper is organized as follows. Section II gives the
theoretical background regarding the process in Beowulf
parallel computing. Section III provides an in-depth look the

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 27

processes involved in the development of this computing.
Vital aspects such as the experiment, validation, verification
used as well as the benchmarks are also given in this section.
Section IV provides the methodology used in the experiment.
The measurement algorithm used in this research and its
parameters are also shown in this section. Section V provides
the analysis and discussions of this research. Lastly, Section
VI concludes the findings of this research. For future work, it
will also include the recommendations.

II. THEORETICAL BACKGROUND

In message-passing programming on Beowulf computing,

a programmer employs message-passing library in order to

produce a desired application. This user-level library

operates on two principal mechanisms.

The first is the method to create separate process for

execution on different computer. Based on the Multiple

Program Multiple Data (MPMD) model, there are separate

programs for each processor. One processor executes master

process while the other processes started from within master

process, as depicted in Fig. 3.

Fig. 3. Multiple Program Multiple Data (MPMD) model

The second is the method to send and receive messages.

Basically, for the point-to-point send and receive primitives,

passing a message between processes is performed using

send() and recv() library calls as shown in Fig. 4.

Fig. 4. Basic send and receive primitives

For the synchronous message passing, the routines
actually return when message transfer completed. For the
send routine, it waits until the complete message can be
accepted by the receiving process before sending the
message. While for the receive routine, it waits until the
message it is expecting arrives. Synchronous routines
intrinsically perform two actions: they transfer data and they

synchronize processes. This is called blocking
communication. The examples of the MPI blocking
primitives are MPI_Send() and MPI_Recv(). The blocking
primitives formats are MPI_Send (buf, count, datatype, dest,
tag, comm, request) and MPI_Recv (buf, count, datatype,
src, tag, comm, request).

However, for the asynchronous message passing, the
routines do not wait for actions to complete before returning
and it usually requires local storage for messages. In general,
they do not synchronize processes but allow processes to
move forward sooner. Thus, in this type of communication,
the message-passing routines return before message transfer
completed. Message buffer is needed between the source and
the destination to hold message. This is called non-blocking
communication and demonstrated in Fig. 5.

Fig. 5. Message-passing routines return before message transfer

completed

The examples of the MPI non-blocking primitives are
MPI_Isend() and MPI_Irecv(). For MPI_Isend(), the send
will return immediately even before source location is safe to
be altered. Meanwhile, for MPI_Irecv(), the receive will
return even if no message to accept. The ‘I’ in ‘Isend’ and
‘Irecv’ means Immediate. The primitives formats are
MPI_Isend (buf, count, datatype, dest, tag, comm, request)
and MPI_Irecv(buf, count, datatype, src, tag, comm,
request). The effects of using these primitives can be
explored by empirically measure the completion time and
rate based on different message sizes.

III. DEVELOPMENT

In order to accomplish this research, a sequence of

development phases are performed (Fig. 6). It is crucial to

organize the phases systematically as it is vital in ensuring a

well-planned process completion.

Process 2 spawn();

Time

Start execution

of process 2

Process 1 Process 2

send(&x, 2);

recv(&y, 1);

x y

Movement

of data

Generic syntax

Process 1 Process 2

send()
;

recv()
;

Message
buffer

Read buffer

Continue
process

Time

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 28

Fig. 6. Methodology for Beowulf cluster developments and experiments

In the early phase of doing this research, it practically

starts with the developments stage (Stage 1), where there are

four work phases of the developments work. These work

phases are the node specification, the hardware set-up, the

software set-up and the node configuration of the Beowulf

cluster system. The work is arranged in this sequence to

ensure that the proper hardware construction is created

before setting up the software on top of it. The initial step in

this node specification phase is specifying the master and

the slave. In order to create a proper naming and numbering

convention, the cluster system is conceptually divided into

two main components, the master component and the slave

component. The convention will have a name node together

with a two-digit number. The master node is given a

codename of node00. The two-digit number 00 is chosen to

demonstrate the function of the master node as the front-end

PC. Meanwhile the first slave node is given a name and

number starting with node01. Thus the second node of this

cluster system is node02 and the subsequent third node is

node03. The last consideration is the network

interconnection. Due to the use of a network switch, the link

topology being applied will be the star organization. Step 2

demonstrates the second work phase in the developments

stage, namely the hardware set-up. This hardware

installation phase covers the assembly work and the

connections of the nodes through a network interconnect.

All the nodes being used are complete standalone systems

with monitors, hard drives, keyboards and their related

peripherals. Basically the node is comprised of a CPU with

a cache, a main memory, a personal computer

interconnection (PCI) and a network interface card (NIC).

This cluster system is conceptually a combination of four

nodes namely individual PCs with a network interconnect

device located at the centre of the arrangement. The general

structure of this cluster system is presented in Fig. 7.

Fig. 7. Hardware set-up

Specifically, the physical units of the cluster system are

of heterogeneous characteristics. The entire four nodes are

connected through their respective RJ45 ports to a switch

using unshielded twisted pair (UTP) cables. A full view of

this cluster set-up is illustrated in Fig. 8.

Step 3 illustrates the third work phase in the

developments stage; the software set-up. The software

installation phase is generally divided into three

components. The first software component is the RedHat

9.0 OS. After the successful installation of the OS, the next

component is the MPICH 1.2.0 library. This software

installation phase begins after the nodes are completely

assembled physically. Step 4 demonstrates the fourth work

phase in the developments section; namely the node

configuration (Fig. 9). The node configuration phase for the

OS part consists of several tasks.

Fig. 8. A full view of the cluster set-up

Memory

 Cache CPU

PCI NIC

 Cache CPU

Memory

PCI NIC

 Cache CPU

PCI NIC

Memory

PCI NIC

Memory

Network

Interconnect

 Cache CPU

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 29

Fig. 9. Flowchart of node configuration

These tasks involve the creation and modification of

important system files to ensure that the system is fully

functional. The MPI library also has specific essential files

that have to be correctly set to run parallel program. Lastly,

the proper environment for the experimental data collection

should be appropriately established to ensure that the data

collection is consistent. This includes the correct command

execution, file and directory location. The proper IP address

and aliasing of all the nodes are primarily established in the

/etc/hosts file. Each node in the cluster has a similar hosts

file with appropriate changes to the first line reflecting the

hostname of that node itself. Thus, slave node01 would have

a first line of the text 192.168.0.9 node01 with the third line

containing the IP and hostname of node00. All other nodes

are configured in the same manner with the 127.0.0.1

localhost line is not removed. This file is edited on every

cluster node by adding the names and IP addresses of every

node in the cluster. This allows these machines to be

accessed by name instead of by IP number. In general, the

system files that need to be created and modified are

illustrated by the flowchart as shown in Fig. 9.

For the validation test (Stage 2), there are two types of

tests applied to ensure that the whole system is properly

working and functioning. The first is the validation for the

Linux OS installation and the second is the validation for

the MPICH installation. In order to validate the successful

setup of the Linux OS into each of the nodes, several

attribute elements of the node system can be verified. These

attribute elements will prove that the OS is correctly set-up

and functioning. The elements consist of the configuration

verification, the routing table verification, the data transfer

verification, the re-verification of the overall performance

and slave validation. These system elements are verified and

confirmed on the master node as well as on all of the remote

slave nodes. For the validation of the MPI installation (Step

6), Hello World program is applied. In this program, the

MPI specifies the library calls to be used in a C program.

The MPI program contains one call to MPI_Init and one call

to MPI_Finalize. Therefore all other MPI routines must be

called after MPI_Init and before MPI_Finalize. Furthermore

the C program must also include the file mpi.h statement at

the beginning of the program.

A. Benchmarking

In this benchmarking phase (Stage 3), it describes the

chosen benchmarking being used in the Beowulf cluster

system. For the reliability testing, the performance of the

developed cluster is tested using the authoritative

benchmarks. There are two kinds of benchmark programs;

the hardware benchmarks and the parallel benchmarks. For

comparison purposes, the Grendel cluster system (G-cluster)

is chosen [12]. The hardware benchmarks used is the

LMbench 2.0 benchmark while the parallel benchmark

applied is the NAS Parallel Benchmark 2.3 (NPB 2.3).

LMbench is a set of small benchmarks used to measure

performance of computer components which are vital for

efficient system performance. The aim of these benchmark

tests is to provide the real application figures that can be

achieved by normal applications. The main performance

bottlenecks of current systems are latency, bandwidth or a

combination of these two. LMbench tests focus on the

system’s ability to transfer data between processor, cache,

memory, disk and network. However, these tests do not

measure the graphics throughput, computational speed or

any multiprocessor features of a computer node. Since

LMbench is highly portable, it should run as is with gcc as

default compiler. This LMbench benchmark tests six

different aspects of the system. These are the processor and

processes, the context switching, the communication

latency, the file and virtual memory system latencies, the

communication bandwidths and the memory latencies.

Firstly, the results of LMbench 2.0 benchmark for the

processor and processes are displayed below (Table 1). The

times shown are in microseconds (µs). In the nineth test

(Table 1), for creating a process through fork+exec, the exec

proc measures the time it takes to create a new process and

have that process perform a new task. The time taken to

exec proc for this cluster is 344.0 µs compared to 706.2 µs.

Lastly, in the tenth test, for creating a process through

fork+/bin/sh –c, the shell proc measures the time it takes to

create a new process and have the new process running a

/etc/xinetd.d/rsh

/etc/shadow

/etc/passwd

/etc/hosts.allow

/etc/xinetd.d/rexec

/etc/exports

/etc/securetty

/etc/pam.d/rsh

/etc/xinetd.d/telnet

/etc/xinetd.d/rlogin

/root/.rhosts

/etc/hosts.equiv

/etc/hosts

/root/.bashrc_profile

new route

new ifconfig

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 30

program by asking the shell to find that program and run it.

The time taken to shell proc for this cluster is 2247 µs

compared to 3605.3 µs. Generally, the comparison results

from the LMbench tests for the processor and processes

show that this Beowulf cluster produces significantly better

performance of a small-scale cluster.

Table 1. LMbench 2.0 benchmark for the processor and processes –

smaller is better

 This cluster G-cluster

1 null call 0.45 0.27

2 null I/O 0.51 0.38

3 stat 1.78 3.72

4 open/close 2.38 4.63

5 select 5.937 26.3

6 signal install 0.79 0.77

7 signal handle/catch 2.59 0.95

8 fork proc 99.0 110.1

9 exec proc 344.0 706.2

10 shell proc 2247 3605.3

Secondly, the results of LMbench 2.0 benchmark for the

communication latencies are exhibited below (Table 2). The

times shown are in microseconds (µs). In the fifth test

(Table 2), for the interprocess communication latency via

TCP/IP, TCP measures the time it takes to send a token

back and forth between a client/server. No work is done in

the processes. The time taken for the TCP of this cluster is

14.1 µs compared to 16.4 µs.

Table 2. LMbench 2.0 benchmark for the local communication latencies

(µs) – smaller is better

 This cluster G-cluster

1 pipe 4.808 4.021

2 AF UNIX 9.46 8.34

3 UDP 11.9 11.5

4 RPC/UDP 21.4 26.4

5 TCP 14.1 16.4

6 RPC/TCP 25.9 39.1

Thirdly, the results of LMbench 2.0 benchmark for the

local communication bandwidths are displayed below

(Table 3). The measurements shown are in Mbytes per

second (MB/s). In the third test, for reading and summing of

a file, file reread measures how fast data is read when

reading a file in 64KB blocks. Each block is summed up as

a series of 4 byte integers in an unrolled loop. The

benchmark is intended to be used on a file that is in

memory. The bandwidth for the file reread of this cluster is

1149.3 MB/s compared to 332.9 MB/s. Generally, the

comparison results from the LMbench tests for the local

communication bandwidths show that this Beowulf cluster

produces a better performance in the whole local

communication bandwidths category tests conducted.

Table 3. LMbench 2.0 benchmark those are for the local communication

bandwidths (MB/s) – bigger is better

 This cluster G-cluster

1 pipe 1181 790.7

2 AF UNIX 2033 516.3

3 file reread 1149.3 332.9

4 Mmap reread 1164.3 462.0

5 Bcopy (libc) 369.8 300.6

6 Bcopy (hand) 387.9 264.1

7 mem read 1522 481.7

8 mem write 522.4 361.6

Finally, the results of LMbench 2.0 benchmark for the

memory latencies are presented below (Table 4). The

measurements shown are in nanosecond (ns).

Table 4. LMbench 2.0 benchmark for the memory latencies

 This cluster G-cluster

1 L1 cache 0.836 2.279

2 L2 cache 7.7070 19.0

3 Main memory 118.5 151.0

For the memory read latencies, L1 cache, L2 cache and

Main memory measure the time it takes to read memory with
varying memory sizes and strides respectively. The entire
memory hierarchy is measured onboard and external caches,
main memory and TLB miss latency. It does not measure the
instruction cache. Generally, the comparison results from the
LMbench tests for the memory latencies show that this
Beowulf cluster produces a better performance for a cluster
since smaller is better.

IV. METHODOLOGY

In order to make the required measurement program, an

algorithm is firstly designed. The program is coded using C

language because of its suitable attribute and more flexible

than the others. The program is tested to ensure it is correct

and modifications will be done from time to time if needed.

It starts with the program initialization and specifying the

program parameters. To start a program, MPI_Init() is used

before calling any MPI function. All processes are enrolled

in a universe called MPI_Comm_World. Each process is

given a unique rank number from 0 up to p-1 for p

processes. To terminate a program, MPI_Finalize() is used.

To measure the execution time between two points in the

code, MPI_Wtime() routines are used together with the

appropriate variables. Thus, initially, the program may call

the MPI_Init and later call MPI_Comm_rank() and

MPI_Comm_size(). The body of the measurement program

runs the test and the times are recorded. The rates and times

are inversely proportional. To record the total amount of

time that the test takes, the MPI_Wtime() function is used

since the MPI timer is an elapsed timer: start_time =

MPI_Wtime(); run_time = MPI_Wtime() - start_time. The

time function is a function of several other routines of the

first data length (first), the last data length (last), process 1

(proc1), process 2 (proc2), the communication test

(commtest) and the context of the message-passing

operation (msgctx): time_function

(first,last,incr,proc1,proc2, commtest, msgctx); In the main

program, the communication test (commtest) is identified as

double data type, and it is a function of the protocol used.

This commtest is a function of &argc, argv and

protocol_name where the protocol name is of char data type

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 31

and the options are blocking, nonblocking and overlap. The

context of the message-passing operation (msgctx) is a

function of proc1 and proc2. Finally, the program ends with

MPI_Finalize(); and return 0. The mpptest of the Linux

performance test is chosen because it has the merit of

having the same purpose of the required measurement. All

the experiments conducted for the blocking and non-

blocking operations are performed based on various

message sizes either at lower level or near saturation level to

compare the effect of different packet sizes.

The measurement program will provide the completion

time and the rate of each different message size. Thus, the

performance effects of using blocking and non-blocking

communication can be compared empirically after

conducting a series of experiments on each library routines.

V. ANALYSIS AND DISCUSSIONS

In this section, it shows the results for the experiments on

the communicational performance (Step 12). The

comparisons are made from the perspective of the rate

(bandwidth) as the message sizes are changed. Fig. 10

provides the results of the non-blocking operations on the

Beowulf cluster based on the different message sizes and

number of processors.

Bandwidth for non-blocking operations for message sizes 1 byte - 10
8
 bytes for np=2,

np=3 and np=4

0

5

10

15

20

25

1 10 10
0

10
00

10
00

0

10
00

00

10
00

00
0

10
00

00
00

1E
+08

Message size (bytes)

B
a

n
d

w
id

th
 (

x
1

06
B

/s
)

np=2 non-blocking

np=3 non-blocking

np=4 non-blocking

Fig. 10. Rate for the non-blocking operations for np=2, np=3 and np=4

The lowest line is the measurement for np=2, the middle

line is the measurement for np=3 and the highest line is the

measurement for np=4. By adding more processors, the rate

of non-blocking communication for each np generally

increases up to a certain saturation level. The saturation

levels are different for each np. Therefore, all non-blocking

operations with different np show almost the same

characteristics of gradually rising and becoming stable

during saturation level.

Similarly, Fig. 11 provides the results of the blocking

operations on the Beowulf cluster based on the different

message sizes and number of processors.

Bandwidth for blocking operations for message sizes 1 byte - 10
8
 bytes for np=2, np=3

and np=4

0

5

10

15

20

25

1 10 10
0

10
00

10
00

0

10
00

00

10
00

00
0

10
00

00
00

1E
+08

Message size (bytes)

B
a

n
d

w
id

th
 (

x
1

06
B

/s
)

np=2 blocking

np=3 blocking

np=4 blocking

Fig. 11. Bandwidth for the blocking operations for np=2, np=3 and np=4

The lowest line is the measurement for np=2, the middle

line is the measurement for np=3 and the highest line is the

measurement for np=4. Similarly, by adding more

processors, the rate of blocking communication for each np

generally increases up to a certain saturation level. The

saturation levels are different for each np. Therefore, all

blocking operations with different np show nearly the same

characteristics of gradually rising and becoming stable

during saturation level.

Subsequently, Fig. 12 summarizes both results on the

non-blocking and blocking operations for np=2, np=3 and

np=4 in one graph.

Bandwidth for non-blocking and blocking operations for message sizes 1 byte - 10
8

bytes for np=2, np=3 and np=4

0

5

10

15

20

25

1 10 100 1000 10000 100000 1E+06 1E+07

Message size (bytes)

B
a

n
d

w
id

th
 (

x
1

06
B

/s
)

np=2 non-blocking

np=2 blocking

np=3 non-blocking

np=3 blocking

np=4 non-blocking

np=4 blocking

Fig. 12. Rate comparison between non-blocking and blocking operations

for np=2, np=3 and np=4

Generally, both operations show almost the same rate of

message passing between different sizes and number of

processors. The rate differences between these operations

are very minimal as per each np. This should indicate that

the use of the non-blocking or blocking routines in this

cluster computing has very little effects on the overall

performance in terms of the rate of message transmission.

Either routine could be applied without having to reconsider

the overall impact on the running application.

VI. CONCLUSSION

This research provides significant findings on the

developed Beowulf cluster system with its message-passing

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 32

implementation. This Beowulf cluster has been compared to

other cluster in many benchmarks as to exhibit that this

setup has a comparable high-performance computing

capability. The cluster system shows the use the distributed

memory system utilizing the message-passing interface

programming model where the communication is via

explicit messages primitives. These message primitives

consist of the blocking and non-blocking communications.

The blocking communication involves the send/receive

request and waits until the reply is returned. However, when

the programming model of non-blocking communication is

used, the messages can return soon without waiting for the

finish of communication operation because the

communication operation can be managed by

communication system in bottom layer of system. From this

study, the research shows that the message rate will increase

as the number of nodes increases. The average round-trip

time also shows very small difference between the two MPI

routines.

This research introduces an alternative method to observe

this phenomenon by looking into the information on the

time and rate based on the two different MPI routines. The

benefit of understanding the performance of the message-

passing communication primitives will provide

programmers to write efficient parallel software and

therefore will eventually contribute to the improved

performance of parallel applications. The development

studies obtained from this research could also be applied as

key guidelines in developing similar Beowulf cluster

computing system.

A. Recommendation

The scope of this research is based on a small-scale four-
node cluster. Therefore, the work of the future research
would be based on higher number of nodes as to investigate
how well the programming primitives scale when the
number of nodes is increased. The effects will be especially
interesting when blocking primitives are used. Apart from
the point-to-point communication, future work could also
examine the collective communication as these are the group
message-passing routines where these routines send and
receive messages to a group of processes. Collective routines
includes cases when all the other nodes send messages
exactly to one node, as well as when every node send
messages to all of the other nodes. Hence, the comparison
between the point-to-point and collective communications
could provide the efficiency comparison on both categories
of the MPI routines. Lastly, the communications performed
by the MPI library routines require buffer space to complete
the operation. Future research can look into the performance
effect when the size of this buffer space is changed.

REFERENCES

[1] G. K. Thiruvathukal, "Guest Editors' Introduction: Cluster

Computing," Computing in Science & Engineering, vol. 7 no. 2,

pp. 11-13, 2005.

[2] M. J. Flynn, "Very High-Speed Computing Systems,"

Proceedings of the IEEE, vol. 54 no. 12, pp. 1901-1909, 1969.

[3] M. Flynn, "Multiprocessors," in Chapter 8 Lectures, 1998.

[4] K. T. Johnson, A. R. Hurson, and B. Shirazi, "General-Purpose

Systolic Arrays," Computer, vol. Nov. 1993, pp. 20-31, 1993.

[5] G. R. Luecke, B. Raffin, and J. J. Coyle, "Comparing the

Communication Performance and Scalability of a Linux and a

NT Cluster of PCs, a Cray Origin 2000, an IBM SP and a Cray

T3E-600," 1999, pp. 26-35.

[6] M. Sung, "SIMD Parallel Processing," Architectures Anonymous,

vol. 6, pp. 11, 2000.

[7] R. M. Karp and R. E. Miller, "Properties of a Model for Parallel

Computations: Determinacy, Termination, Queueing," J. Applied

Mathematics, vol. 14, pp. 1390-1411, 1966.

[8] H. Kai, W. Choming, W. Cho-Li, and X. Zhiwei, "Resource

Scaling Effects on MPP Performance: The STAP Benchmark

Implications," IEEE Transactions on Parallel and Distributed

Systems, vol. 10 no. 5, pp. 509-527, 1999.

[9] K. Watanabe, T. Otsuka, J. I. Tsuchiya, H. Amano, H. Harada, J.

Yamamoto, H. Nishi, and T. Kudoh, "Performance Evaluation of

RHiNET 2/NI: A Network Interface for Distributed Parallel

Computing Systems," 2003, pp. 318-325.

[10] M. Faidz, M. N. Taib, and S. Yahya, "Overlapping Effect of

Message-Passing and Computation in a Beowulf Cluster

Computing," unpublished, 2012.

[11] M. Faidz, M. N. Taib, and S. Yahya, "Analysis of the MPI

Communication Performance in a Distributed Memory System

Architecture," unpublished, 2012.

[12] K.-J. Andersson, D. Aronsson, and P. Karlsson, "An Evaluation

of the System Performance of a Beowulf Cluster. Internal Report

No. 2001:4," http://www.nsc.liu.se/grendel, 2001.

[13] "Linux links, http://www.linuxlinks.com/," accessed on 1 Feb

2007.

[14] M. Perry, "Building Linux Beowulf Clusters,"

http://fscked.org/writings/clusters/cluster.html, 2000.

[15] "Linux Start, http://www.linuxlinks.com/," accessed on 1 Feb

2007.

[16] "The Beowulf Underground," http://beowulf-underground.org/,

accessed on 1 Feb 2007.

[17] "The Linux HOWTO Index,

http://sunsite.unc.edu/mdw/HOWTO," accessed on 1 Feb 2007.

[18] "RedHat Linux, http://www.redhat.com/," accessed on 1 Feb

2007.

[19] "Mandrake Linux, http://www.redhat.com/," accessed on 1 Feb

2007.

[20] "Linux Software for Scientists, http://www.llp.fu-

berlin.de/baum/linuxlist-a.html," accessed on 30 Jan 2007.

[21] "Linux Gazette," http://www.linuxgazette.com/, accessed on 1

Feb 2007.

[22] "Linux Journal's Linux Resources, http://www.ssc.com/linux,"

accessed on 1 Feb 2007.

[23] S. Blank, "Using MPICH to Build a Small Private Beowulf

Cluster," http://www.linuxjournal.com/article/5690, 2002.

[24] "Scientific Applications on Linux, http://sal.kachinatech.com/,"

accessed on 1 Feb 2007.

[25] "Beowulf (computing),

http://en.wikipedia.org/wiki/Beowulf_(computing)#Original_Be

owulf_HOWTO_Definition," accessed on 4 Dec 2007.

[26] W. Feng, M. Warren, and E. Weigle, "The Bladed Beowulf: A

Cost-Effective Alternative to Traditional Beowulfs," in Proc. The

IEEE International Conference on Cluster Computing

(CLUSTER'02), 2002.

[27] W. Feng, M. Warren, and E. Weigle, "Honey, I Shrunk the

Beowulf!," in Proc. The International Conference on Parallel

Processing (ICPP'02), 2002.

[28] L. Wen-lang, X. An-dong, and R. Wen, "The Construction and

Test for a Small Beowulf Parallel Computing System," in Proc.

Third International Symposium on Intelligent Information

Technology and Security Informatics (IITSI), Jinggangshan,

China, 2010, pp. 767-770.

http://www.nsc.liu.se/grendel
http://www.linuxlinks.com/,
http://fscked.org/writings/clusters/cluster.html
http://www.linuxlinks.com/,
http://beowulf-underground.org/
http://sunsite.unc.edu/mdw/HOWTO,
http://www.redhat.com/,
http://www.redhat.com/,
http://www.llp.fu-berlin.de/baum/linuxlist-a.html,
http://www.llp.fu-berlin.de/baum/linuxlist-a.html,
http://www.linuxgazette.com/
http://www.ssc.com/linux,
http://www.linuxjournal.com/article/5690
http://sal.kachinatech.com/,
http://en.wikipedia.org/wiki/Beowulf_(computing)#Original_Beowulf_HOWTO_Definition,
http://en.wikipedia.org/wiki/Beowulf_(computing)#Original_Beowulf_HOWTO_Definition,

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 33

[29] M. Warren, E. H. Weigle, and W.-C. Feng, "High-Density

Computing: A 240-Processor Beowulf in One Cubic Meter," in

Proc. The IEEE/ACM SC2002 Conference (SC'02), 2002.

[30] K. D. Underwood, R. R. Sass, and I. Walter B. Ligon, "Cost

Effectiveness of an Adaptable Computing Cluster," in Proc. The

ACM/IEEE SC2001 Conference (SC'01), 2001.

[31] H. Kuo-Chan, C. Hsi-Ya, S. Cherng-Yeu, C. Chaur-Yi, and T.

Shou-Cheng, "Benchmarking and Performance Evaluation of

NCHC PC Cluster," National Center for High-Performance

Computing, Hsinchu, Taiwan, 2000, pp. 923-928.

[32] C. Yi-Hsing and J. W. Chen, "Designing an Enhanced PC

Cluster System for Scalable Network Services," in Proc. 19th

International Conference on Advanced Information Networking

and Applications (AINA 2005), 2005, pp. 163-166.

[33] P. Farrell, "Factors Involved in the Performance of Computations

on Beowulf Clusters," Electronic Transactions on Numerical

Analysis, vol. 15, pp. 211-224, 2003.

[34] P. Uthayopas, T. Angskun, and J. Maneesilp, "On the Building of

the Next Generation Integrated Environment for Beowulf

Clusters," in Proc. The International Symposium on Parallel

Architectures, Algorithms and Networks (ISPAN'02), 2002, pp.

1-6.

[35] P. Uthayopas, S. Paisitbenchapol, T. Angskun, and J. Maneesilp,

"System Management Framework and Tools for Beowulf

Cluster," Computer and Network System Research Laboratory,

Kasetsart University, Bangkok, 2000.

[36] J. Stafford, "Beowulf Founder: Linux is Ready for High-

Performance Computing," SearchOpenSource.com, 2004.

[37] R. Kunz and J. Watson, "Clusters - Modern High Performance

Computing Platforms," Penn State Applied Research Laboratory,

2004.

[38] D. Fernandez Slezak, P. G. Turjanski, D. Montaldo, and E. E.

Mocskos, "Hands-On Experience in HPC with Secondary School

Students," IEEE Transactions on Education, vol. 53, pp. 128-

135, 2010.

[39] K. Yu-Kwong, "Parallel program execution on a heterogeneous

PC cluster using task duplication," 2000, pp. 364-374.

[40] L. Chi-Ho, P. Kui-Hong, and K. Jong-Hwan, "Hybrid parallel,

evolutionary algorithms for constrained optimization utilizing PC

clustering," 2001, pp. 1436-1441.

[41] W. Gropp and E. Lusk, User's Guide for MPICH, a Portable

Implementation of MPI Version 1.2.0: Argonne National

Laboratory, University of Chicago, 1996.

[42] H. Shan, J. P. Singh, L. Oliker, and R. Biswas, "Message Passing

and Shared Address Space Parallelism on an SMP Cluster,"

Parallel Computing, vol. 29 no. 2, pp. 167-186, 2002.

[43] K. D. Underwood and R. Brightwell, "The Impact of MPI Queue

Usage on Message Latency," in Proc. International Conference

on Parallel Processing (ICPP 2004), 2004, pp. 152-160.

[44] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E.

Rodriguez, and F. Cappello, "MPI Tools and Performance

Studies - Blocking vs. Non-Blocking Coordinated Checkpointing

for Large-Scale Fault Tolerant MPI," in Proc. 2006 ACM/IEEE

Conference on Supercomputing Tampa, Florida 2006, pp. 127.

[45] D. Grove and P. Coddington, "Precise MPI Performance

Measurement using MPIBench,"

http://parallel.hpc.unsw.edu.au/HPCAsia/papers/72.pdf, 2001.

http://parallel.hpc.unsw.edu.au/HPCAsia/papers/72.pdf

