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 

Abstract—This paper introduces ordinary algebra to express 

the truth value of a logic function. The algebraic expressions are 

based on switching variables that take the values 0, 1, or 

unspecified. The expressions contain addition and subtraction 

operators from ordinary algebra. It is shown that these algebraic 

expressions can be used in conjunction with the Boolean 

difference equation to generate test patterns for a combinational 

logic circuit. The test pattern generation method is complete 

because it will find a test set for a fault or otherwise prove the 

fault to be untestable.   

 
Index Terms — ATPG, 0-1 controllability, observability, 

stuck-at faults. 

 

I. INTRODUCTION 

EST pattern generation for combinational and sequential 

circuits is an intractable problem. Many algorithms have 

been proposed for test pattern generation in the literature. 

Some of these algorithms are algebraic while others are based 

on backtracking method. Boolean difference is a powerful 

algebraic method described in [1] and [2]. The Boolean 

difference method will find a test for a fault if one exists or 

otherwise prove the fault to be untestable (i.e., the fault cannot 

be tested). Other algebraic methods are also available in the 

literature. For example, in [3], line conditions are attached to 

every line in the circuit and then these conditions are used to 

determine the value of a line in normal and faulty circuits. 

Several other methods that are an enhancement of the method 

described in [3] are also available in the literature. These are 

the equivalent normal procedure [4], the cause-effect equation 

[5], and the SPOOF procedure [6]. The algebraic methods 

described in [4-6] are complete because these methods will 

find a complete test set for a fault or prove the fault to be 

untestable.  

 

 On the other hand, there are algorithms for test pattern 

generation that are based on a backtracking method. In these 

methods, a target fault is controlled and the fault effect is 

propagated to an observable point such as a primary output in 

the circuit. If a conflict occurs, in the process of controlling 

and observing a fault, then the program must backtrack to re-

decide on a previous decision. These Automatic Test Pattern 

Generation (ATPG) programs work with an equivalent fault 

 
 

set in order to reduce the number of target faults [7-9]. The D-

algorithm was proposed to tackle the test pattern generation 

problem for combinational circuits [10-11]. In this algorithm, 

a discrepancy signal D or D is propagated to an observable 

point in the circuit. The decision points in this algorithm could 

be the entire circuit. An alternative algorithm was proposed in 

[12] where the decision points are only on the primary inputs. 

This reduces the number of decision points from the number 

of gates to the number of the primary inputs in the circuit. 

Further enhancements were introduced in [13] where essential 

signal values of internal nodes are determined which reduces 

the number of backtracking an ATPG program makes. This 

concept of essential signal assignment (unique implication) 

was also used in [14-15] to reduce the number of backtracks. 

 

In this paper we apply ordinary algebra to express the truth 

value of a logic function. The algebraic expressions described 

in this paper are based on switching variables that may take 

the values 0, 1, or unspecified. The expressions contain 

addition and subtraction operators from ordinary algebra. For 

any internal node or output of a circuit we determine two 

algebraic expressions. One expression enumerates all input 

combinations for which the internal node or the output 

assumes the logic value 1. The other expression enumerates 

all input combinations for which the internal node or the 

output assumes the logic value 0. Using these expressions in 

conjunction with the Boolean difference equation, we are able 

to determine the test set for any fault in the circuit. The 

proposed algebraic method is complete because it either finds 

a complete test set for a fault or otherwise proves the fault to 

be untestable. 

   

Topological description of a logic network is frequently 

used in many types of VLSI CAD applications. Logic 

simulation, fault simulation, timing analysis, and test pattern 

generation are some examples of VLSI CAD applications 

where the topological description of the circuit is used. The 

algebraic method described in this paper operates on a 

topological description of the circuit. 

 

II. BINARY EXPRESSION 

A combinational switching circuit C realizing a switching 

function y of n variables assigns a value of 0 or 1 to a bit 
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string of length n. Each bit string of length n is called an input 

combination. The response of the switching circuit C is a 

function only of the input combinations. Since there are n bit 

positions and there exists two choices for each bit position 

(i.e., 0 or 1), there are 2n such input combinations. We will 

show that such input combinations that define a switching 

function can often be expressed implicitly. 

Definition 1: For any input variable or identifier the notation 

x̂  means the value of x is 1. The notation x  means the value 

of x is 0. The notation x means that the value of the variable or 

identifier is not specified. Therefore, x can be either a 0 or a 1. 

The notation described in definition 1 allows us to specify a 

set of input combinations of length n in an implicit way. For 

example, consider a set of input variables or identifiers 

x1,x2,…,xn. We can implicitly specify all possible input 

combinations of length n in which the first identifier is a 0 and 

the third identifier is a 1 by writing nxxxxx ,,,ˆ, 43,21  . 

Since x1 is specified as 1x  and x3 is specified as 3x̂ they must 

be 0 and 1 respectively in each input combination. The 

identifiers x2,x4,…,xn have two choices. That is, these 

remaining identifiers can be either a 0 or a 1. Therefore, we 

can write a product term nxxxx 321
ˆ that implicitly 

enumerates 2n-2 input combinations in which the first identifier 

is a 0 and the third identifier is a 1. 

 

For every node in a circuit, whether that is a primary input, 

an internal node, or a primary output, we define two sets: the 

first set contains input combinations that set the node to a 1. 

The other set contains input combinations that set the node to 

a 0. A definition of these two sets is given below. 

Definition 2: Let C be a switching circuit realizing a function y 

of n variables x1,x2,…,xn. We define ŷ  as a set and as an 

expression that consists of all input combinations that set the 

output node y to 1. The complement of ŷ  is y  such that y  

is a set and an expression that contains all input combinations 

that set the output node y to 0. Let ŷ  and y  denote the 

number of input combinations that set y to 1 and 0 

respectively. 

 

Consider a 3-input primitive OR gate with inputs 21, xx  

and 3x and output y . The only input combination that sets the 

output to 0 is 321 xxx . Since this is the only input 

combination for which 0y , it follows that  

321 xxxy   and 1)1)(1)(1( y .  

The product term 321 xxx  is an implicit enumeration of 8 

input combinations which is the total input space of the 3-

input OR gate. Therefore, if we subtract y  from the total 

input space we get the 7 input combinations for which the 

output is a 1. Then it follows that  

321321
ˆ xxxxxxy   and 

7)1)(1)(1()2)(2)(2(ˆ y  

For a 3-input primitive AND gate with inputs x1, x2, and x3 

and output y, we can similarly write that  

321
ˆˆˆˆ xxxy  , 1)1)(1)(1(ˆ y  

321321
ˆˆˆ xxxxxxy  , 7)1)(1)(1()2)(2)(2( y  

 

A product term is the AND operation of input variables or 

identifiers. In a product term, zero or more identifiers are 

unspecified. A product term is often an implicit enumeration 

of a set of input combinations. An identifier that is not 

specified in a product term can have two values (0 or 1). An 

identifier that is specified in a product term can assume only 

the specified value. A binary expression consists of product 

term(s) where each product term appears in the expression 

with an addition or a subtraction sign.  For example, for the 3-

input primitive OR gate, 321 xxxy  is a binary expression. 

Similarly, for the same gate, 321321
ˆ xxxxxxy  is a binary 

expression. The name binary expression is based on the 

observation that each variable or identifier in this expression 

is either specified or not specified. If a variable or identifier is 

specified then it is specified to be either 0 or 1. If a variable or 

identifier is not specified then it is don’t care and its value for 

the evaluation of the function does not matter. 

If a product term contains n identifiers and each identifier in 

the product term is unspecified, then the product term is an 

implicit enumeration of 2n input combinations. Consider a 

function y of n variables. Any subset of input combinations of 

the function is called an input space of the function. The 2n 

input combinations of the function is called the total input 

space of the function. We use X to denote the total input space 

of a function y.  

The union (sum) and intersection (product) operations can 

be defined for binary expressions ŷ and y for a function y of n 

variables. Let X denote the total input space of the function y. 

Since ŷ is a set of all input combinations that set y = 1 and 

y is a set of all input combinations for which y = 0, it follows 

that the union of these two sets is the total input space. That is,  

Xyyy ˆ  

In algebraic terms, the sum of the two expressions is an 

expression that contains all input combinations (the total input 

space). Therefore,  

Xyyy ˆ  

The intersection of the two sets must be empty because an 

input combination that sets y to 1 cannot set y to 0 as well and 

therefore, that input combination cannot be in both sets.  

Therefore, 
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yyˆ  

The product operation of the two expressions ŷ and y is 0. 

This is because an input combination that sets y = 1 must 

differ by at least one bit from an input combination that sets y 

= 0. Therefore,  

0ˆ  yy  

III. ALGEBRAIC THEOREMS 

We defined X as the total input space of a function, i.e., the 

2n input combinations of a n-variable function. A single 

variable function has a total input space of size two, namely 0 

and 1. Thus a single variable function x can be expanded to 

write as 

xxx  ˆ                                                                  (1) 

Using (1) we can expand a product term into two product 

terms for an identifier that is not specified. Also (1) can be 

used to combine two product terms that differ only by one 

identifier. That is, in one product term the identifier is 

specified as x̂  and in the other product term the identifier is 

specified as x . 

We can specify the property of complementation [16]. A 

variable or identifier cannot be set to opposite values 

simultaneously and, therefore, such a proposition must be 

false. 

0ˆ xx                                                                     (2) 

The property of idempotency is specified below and it can 

be proved by perfect induction [16].  

xxx                                                                      (3) 

If a variable or identifier is specified in one product term 

and unspecified in another product term then multiplying 

these two product terms gives a product term in which the 

variable or the identifier is specified.  

xxx

xxx



 ˆˆ
                                                                    (4) 

Proof: 

xxxxxxxxxx

xxxxxxxxxx





ˆ)ˆ(

ˆˆˆˆ)ˆ(ˆˆ
                                                                                          

The addition and subtraction rules are from ordinary algebra 

and are shown below. 

0



xx

xxxx
 

Note that the sum rule for adding two variables is different 

from the Boolean idempotency rule. If x is a Boolean variable, 

then the idempotency rule states that summing the variable x 

with itself yields the variable itself as shown below [16]. 

xxx   

On the other hand, in manipulating binary expressions, the 

addition and subtraction of variables or product terms follow 

the arithmetic rules. 

 

The expansion rule has been described for a single variable. 

Given a product term in a binary expression, the expansion 

rule shows how to expand the product term into two product 

terms. We can expand a product term such that in the 

expanded form each product term represents a single input 

combination. That will produce too many input combinations. 

The alternative way to expand a product term is to expand one 

identifier at a time to obtain a desired product term. Consider 

the first form of expansion. 

2121212121
ˆˆˆˆ xxxxxxxxxx   

The above form of expansion expands each variable in the 

expression to obtain an expression in which each product term 

represents a single input combination. An alternative form of 

expansion is sometimes very helpful in the manipulation of 

binary expressions. This form of expansion is shown below. 

321321321321

321321321

321321321

ˆˆˆ

ˆˆ

ˆ

xxxxxxxxxxxx

xxxxxxxxx

xxxxxxxxx







 

The expansion procedure works as follows. In the first line, 

the variable x1 is expanded using (1). In the second line, the 

variable x2 is expanded using (1) for the second product term. 

In the third line, the variable x3 is expanded using (1) for the 

third product term. If a product term is expanded for n 

variables then the above expansion procedure produces (n + 

1) terms. For example, to reduce the binary expression 

( 321321
ˆ xxxxxx  ) such that the negative term is eliminated 

we perform the following steps. 

 

321321321

321321

321321321321321

ˆˆˆ

ˆˆ

ˆˆˆˆ

xxxxxxxxx

xxxxxx

xxxxxxxxxxxxxxx







 

This form of expansion is far better because it yields fewer 

terms. If we had to do a full expansion to eliminate the 

negative term in the expression, we would end up with seven 

terms in the expression. When all the negative terms of a 

binary expression for a function y are eliminated, then the 

expression is a union of zero or more product terms that 

enumerate input combinations that set the function y to a 1 or 

a 0. 

 

For any node y in a circuit whether that be an internal node 

or a primary output we determine both ŷ  and y . These two 

expressions are enumeration of input combinations that set y 

to 1 and 0 respectively. Therefore, we determine input 

combinations both for a function and its complement.  

 

IV. ALGEBRAIC EQUATIONS FOR PRIMITIVE GATES 

All gates of a combinational circuit must be evaluated in 

order to determine the binary expressions associated with the 
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output nodes of these gates. Therefore, algebraic equations 

must be established for the evaluation of all primitive gates. 

For any gate G in the circuit following are the rules for the 

evaluation of gate G. 

(i) If G is a NOT gate with input y1 and output y2 then 

12
ˆ yy  and 12

ŷy  . 

(ii) If G is an AND gate with inputs kyyy ,,, 21   and 

output yk+1 then k 




 
k

j

jk yy
1

1
ˆˆ and 1211

ˆ


 kkk
yyyyy  . 

(iii) If G is an OR gate with inputs kyyy ,,, 21   and 

output yk+1 then  







k

j
jk

yy
1

1
and

1211
ˆ

 
kkk yyyyy  . 

(iv) If G is an XOR gate with inputs y1, y2 and output y3 

then 21213
ˆˆ yyyyy  and 

21213
ˆˆˆ yyyyy  . 

 

For the AND(OR) gates in the above equations, 

kyyy 21  denote the total input space of output node 1ky . 

Therefore, this product term is the product of all input 

variables (unspecified) that feed the output node yk+1. 

 

We now discuss the algebraic equations for the primitive 

gates. For a NOT gate, the input combinations that set the 

input of the NOT gate to 0 also set the output to 1 and vice 

versa. For an AND gate, the binary expressions kyyy ˆ,,ˆ,ˆ
21   

set the inputs to a logic 1 by definition. In determining the 

output binary expression 1
ˆ

ky , we have to consider three 

cases. 

Case 1: A product term in the expression for 1
ˆ

ky is 0 if the 

product term contains an identifier x both as x̂ and x  (using 

(2)). 

Case 2: If an unspecified identifier x appears multiple times in 

a product term of 1
ˆ

ky then it is reduced to one identifier x 

(using (3)). 

Case 3: If a product term of 1
ˆ

ky contains an identifier x both 

in specified ( xorx̂ ) form and unspecified (x) form then the 

identifier becomes specified (using (4)). 

 

The multiplication operation gives the input combinations 

that set node yk+1 to 1 for an AND gate. Therefore, if 1
ˆ

ky is 

the set of input combinations that set yk+1 to a 1, then 

subtracting 1
ˆ

ky from the total input space of node yk+1 gives 

the input combinations that set yk+1 to a 0. Similar argument 

can be made about an OR gate. Note that the above argument 

is for a gate of convergence where a reconvergent fanout node 

converges. The equation for the XOR gate follows from its 

Boolean equation. 

V. USING THE BINARY EXPRESSION 

The determination of binary expressions for circuit nodes is 

illustrated in this section with an example (Fig. 1). The circuit 

must be levelized first. Then binary expressions are 

determined for level 1 gates, level 2 gates and so on using the 

algebraic equations described in the previous section.  

 

 

 

 

 

 

 

 

 

Figure 1: Example circuit for finding of binary expressions. 

 

The level 1 gates y1 and y2 are evaluated first. The gate y1 is 

an inverter. Therefore, 

;ˆ

;ˆ

11

11

xy

xy




 

The gate y2 is an OR gate and its binary expressions are 

given by 

;ˆ

;

32322

322

xxxxy

xxy




 

Next we determine the binary expressions associated with 

the outputs of level 2 gates y3 and y4. 

41414144

41144

3213213213213

321321213

ˆˆ

;ˆˆˆˆ

ˆˆˆ

;ˆˆˆˆˆ

xxxxyyxy

xxyxy

xxxxxxxxxyyxy

xxxxxxyxy









 

The last gate in the example of Fig. 1 is a level 3 gate y5. 

The binary expressions corresponding to the output of this 

gate are determined as follows. 

4321

432143214321

4141

321321321435

ˆ

ˆˆ

)ˆ(

)ˆˆ(

xxxx

xxxxxxxxxxxx

xxxx

xxxxxxxxxyyy







 

Next we proceed to determine the binary expression for 

node y5 that sets y5 to logic 1. 

x1 

x2 

x3 

x4 

y1 

y2 

y3 

y4 

y5 
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432143214321

43214321

432143214321

5435

ˆˆˆ

ˆˆ

ˆ

ˆ

xxxxxxxxxxxx

xxxxxxxx

xxxxxxxxxxxx

yyyy









 

 

The expression for 
5

y readily gives all input combinations 

that set node y5 to 0. The number of input combinations that 

set y5 to 0 can be determined from the expression as follows.  

 

6)2)(1)(1)(1(

)2)(2)(2)(1()1)(2)(2)(1()2)(2)(2)(2(
5



y
  

  

 The negative terms from the expression for 
5

y  can be 

eliminated as follows. 

   

43214321

4321

432143214321

43214321

4321432143215

ˆ

ˆ

ˆˆ

ˆˆ

ˆˆ

xxxxxxxx

xxxx

xxxxxxxxxxxx

xxxxxxxx

xxxxxxxxxxxxy











 

 

 In the above expansion, the product term x1x2x3x4 was first 

expanded for the variable x1 using (1). Then the variable x4 

was expanded using (1) again in the second line. Then it 

follows that the output node y5 is 0 for the following input 

combinations {x1x2x3x4 = 0XX0, 100X}. 

 

 We now manipulate the binary expression that set node y5 

to a 1. First, the number of input combinations that set the 

output node to 1 is given by the following. 

10

)2)(1)(1)(1()2)(2)(2)(1()1)(2)(2)(1(ˆ
5



y
 

 

We can eliminate the negative terms from the expression 

for y5 that set y5 to 1. 

 

432143214321

4321

432143214321

4321432143215

ˆˆˆˆˆ

ˆ

ˆˆˆˆ

ˆˆˆˆ

xxxxxxxxxxxx

xxxx

xxxxxxxxxxxx

xxxxxxxxxxxxy







 

Therefore, the input combinations that set y5 to 1 is 

{x1x2x3x4 =11XX, 101X, 0XX1}. 

 

VI. TEST PATTERN GENERATION METHODOLOGY 

The objective of a test pattern generation algorithm for 

combinational circuits is to determine a set of input patterns 

such that when these patterns are applied at the inputs of a 

circuit, the response of the circuit is incorrect in the presence 

of a fault. A fault is an abstract model of a physical defect. 

Thus a fault in an integrated circuit represents the 

manifestation of a physical defect in the functional behavior 

of the circuit. The most commonly used fault model is the 

stuck-at fault. A stuck-at fault denotes the functionality of a 

signal line in a circuit as either stuck-at 0 (s-a-0) or stuck-at 1 

(s-a-1) in the presence of a physical defect. One important 

assumption made by most test pattern generation algorithms is 

that only a single line in the circuit is faulty whether it is a s-a-

0 fault or a s-a-1 fault. This is often known as the single stuck 

fault (SSF) assumption. We assume a single stuck at fault 

model in this paper. 

We show the use of the Boolean difference method for 

determining the test patterns for a combinational circuit. The 

Boolean difference is a powerful method for determining test 

patterns because it is guaranteed to find a test pattern for a 

fault if there exists a test pattern for the fault [1-2]. Consider a 

function y  of input variables nxxx ,, 21 . The set of test 

patterns that detect the fault jx  s-a-0 is given by the equation  

j

j
dx

dy
xT                                                                       (5) 

and the set of test patterns that detect the fault jx  s-a-1 is 

given by the equation 

 

j

j

dx

dy
xT                                                                      (6) 

In the above equations, 

jdx

dy
 is called the Boolean difference 

of y with respect to jx  and it is given by the expression  

)0()1()0()1(

)0()1(





jjjj

jj

j

xyxyxyxy

xyxy
dx

dy

 

The binary expressions can be substituted in the Boolean 

difference equation as follows. Consider a binary expression 

ŷ for a function y. Let xj be an input variable of y. The 

product operation yx j
ˆˆ  gives all input combinations for which 

y is a 1 and in each of these input combinations the variable xj 

has a value of 1. Following the product operation, if we 

remove the literal jx̂  from the expression yx j
ˆˆ  then this 

expression is equivalent to the switching expression y(xj = 1). 

This is because y(xj = 1) denotes all input combinations for 

which y is a 1 and in each of these input combinations the 

value of xj is a 1. We denote this product operation by 
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)ˆ(ˆ
jxy . 

That is, yxxy jj
ˆˆ)ˆ(ˆ  . The same definition applies for the 

expressions )ˆ(),(ˆ
jj xyxy and )( jxy . Consider a 3-input 

OR gate with y = x1 + x2 + x3. The binary expression 

321 xxxy   represents the input combination for which y is 

0. Similarly, 321321
ˆ xxxxxxy   represents the input 

combinations for which y is 1. Then  

3211

11

323211

3211

)(

0ˆ)ˆ(

ˆ)(ˆ

ˆˆ)ˆ(ˆ

xxyxxy

yxxy

xxxxyxxy

xxyxxy









 

 

The function )1( jxy  denotes all input combinations for 

which the function y is 1 and in each of these input 

combinations the value of the variable xj is 1. Therefore, 

)1( jxy  is equivalent to the expression )ˆ(ˆ
jxy because the 

binary expression denotes all input combinations for which 

the function y is 1 and in each of those input combinations the 

value of the variable xj is 1. Similarly, the function 

)0( jxy denotes all input combinations for which the 

function y is 0 and in each those input combinations the value 

of the variable xj is 0. Therefore, this term is equivalent to the 

expression )( jxy because this binary expression denotes all 

input combinations for which the function y is 0 and in each 

of those input combinations the value of the variable xj is 0. 

Similar argument can be made about the equivalence of the 

terms )1( jxy and )ˆ( jxy and the terms )0( jxy and 

)(ˆ
jxy . Based on this discussion, the Boolean difference of a 

function y with respect to the variable xj can be rewritten for 

the binary expressions as,  

)(ˆ)ˆ()()ˆ(ˆ

)0()1()0()1(

jjjj

jjjj

j

xyxyxyxy

xyxyxyxy
dx

dy




 

With the Boolean difference equation defined for binary 

expressions, we can now determine the test sets for a fault jx  

s-a-0 and s-a-1 by using equations (5) and (6) respectively. 

 
The Boolean difference equation described above 

determines test patterns for faults on primary inputs of a 

circuit. The Boolean difference method can also be used to 

determine test patterns for faults on the internal nodes of a 

circuit. This is made possible using the chain rule [1]. 

Consider a function yi with input variables 

nxxxX ,,, 21  . Let C be the circuit realization of this 

function and yj be an internal node in C. Then the function 

realized by node yj can be written in terms of the input 

variables as yj(X). Moreover, the function yi(X) can be 

expressed as a function of the internal node yj and the input 

variables X as g(yj, X). Then we can determine the Boolean 

difference of the function g(yj, X) with respect to yj. The 

Boolean difference is given by 

)1()0()1()0(

)1()0(
),(





jjjj

jj

j

j

ygygygyg

ygyg
dy

Xydg

 

In order to use the binary expressions in determining test 

vectors for an internal node, the binary expression must also 

be derived based on the identifier of the internal node. 

Therefore, the binary expressions for the output node must be 

expressed in terms of yj and X. With this modification of the 

binary expressions, we write the Boolean difference 

expression in terms of the binary expressions as 

)ˆ(ˆ)()ˆ()(ˆ
jijijiji

j

i yyyyyyyy
dy

dy
  

 

Then the set of test vectors that detect the fault yj s-a-0 is 

given by  

j

i

j
dy

dy
yT ˆ  

 

The set of test vectors that detect the fault yj s-a-1 is given by 

j

i

j dy

dy
yT   

 

We illustrate the use of the chain rule with the circuit of Fig. 

2. Consider deriving tests for stuck-at faults on node y2 using 

the chain rule. In order to use the chain rule, the binary 

expression must be derived using the identifier for node y2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example circuit for test pattern generation. 

 

The binary expressions for node y8 as a function of node y2 are 

given below.  

x1 

x2 

x3 

x

4 

y1 

y2 

y3 

y4 

y5 

y6 

y7 

y8 
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The Boolean difference of output node y8 with respect to node 

y2 is given by  

)ˆ(ˆ)()ˆ()(ˆ
28282828

2

8 yyyyyyyy
dy

dy
  

Each of the terms in the Boolean expression is given below. 
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432143214321
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ˆˆ

ˆ)ˆ(

ˆˆˆˆ

ˆ)(ˆ

xxxxxxxx

yyyy
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
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
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
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The difference equation evaluates to the following expression. 

432143214321

2

8 ˆˆˆˆˆ xxxxxxxxxxxx
dy

dy
  

The set of test vectors to detect the fault y2 s-a-0 is given by 

the following expression.  

4321

2

8

2
ˆ xxxx

dy

dy
yT   

The binary pattern to detect the fault y2 s-a-0 is {x1x2x3x4 = 

0000}. The set of test vectors that detect the fault y2 s-a-1 is 

given by the following expression.  

43214321

2

8

2
ˆˆˆˆˆ xxxxxxxx

dy

dy
yT   

The binary patterns for this fault are {x1x2x3x4 = 0111, X110}. 

 

 The second product term in the expression 8ŷ makes 

inconsistent assignment because y2 is 0 when x2 or x3 is a 1. 

When we determine the binary expression for the output node 

y8, y2 is treated as an independent variable. Moreover, x2 and 

x3 are reconvergent fanout nodes that converge at node y8. If 

we substitute 322
ˆ xxy  then this product term becomes 0 

and therefore, does not cause any problem in the 

determination of the input combinations that set the output 

node to a 1. 

 

VII. CONCLUSION 

This paper presented an algebraic method for determining 

test set for a fault in a combinational circuit. A binary 

expression has been developed that incorporates rules from 

ordinary algebra. The binary expressions are based on logic 

variables. 

 

The binary expression for a function is not unique. There is 

not a one-to-one correspondence or unique relationship 

between a function and its binary expression. A function may 

be represented by more than one binary expression that are 

different literal wise. However, the primary input 

combinations represented by the two different binary 

expressions of a function must of course be the same. 

 

In a Boolean expression, two product terms may contain 

common primary input combinations. In other words, the 

input spaces denoted by two product terms in a Boolean 

expression may overlap. In a binary expression, however, two 

product terms denote input spaces that are disjoint; there is no 

overlap. 
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