

 International Journal of Computer and Information Technology (2279 – 0764)

Volume 01– Issue 01, September 2012

 www.ijcit.com 1



Abstract—This paper introduces ordinary algebra to express

the truth value of a logic function. The algebraic expressions are

based on switching variables that take the values 0, 1, or

unspecified. The expressions contain addition and subtraction

operators from ordinary algebra. It is shown that these algebraic

expressions can be used in conjunction with the Boolean

difference equation to generate test patterns for a combinational

logic circuit. The test pattern generation method is complete

because it will find a test set for a fault or otherwise prove the

fault to be untestable.

Index Terms — ATPG, 0-1 controllability, observability,

stuck-at faults.

I. INTRODUCTION

EST pattern generation for combinational and sequential

circuits is an intractable problem. Many algorithms have

been proposed for test pattern generation in the literature.

Some of these algorithms are algebraic while others are based

on backtracking method. Boolean difference is a powerful

algebraic method described in [1] and [2]. The Boolean

difference method will find a test for a fault if one exists or

otherwise prove the fault to be untestable (i.e., the fault cannot

be tested). Other algebraic methods are also available in the

literature. For example, in [3], line conditions are attached to

every line in the circuit and then these conditions are used to

determine the value of a line in normal and faulty circuits.

Several other methods that are an enhancement of the method

described in [3] are also available in the literature. These are

the equivalent normal procedure [4], the cause-effect equation

[5], and the SPOOF procedure [6]. The algebraic methods

described in [4-6] are complete because these methods will

find a complete test set for a fault or prove the fault to be

untestable.

 On the other hand, there are algorithms for test pattern

generation that are based on a backtracking method. In these

methods, a target fault is controlled and the fault effect is

propagated to an observable point such as a primary output in

the circuit. If a conflict occurs, in the process of controlling

and observing a fault, then the program must backtrack to re-

decide on a previous decision. These Automatic Test Pattern

Generation (ATPG) programs work with an equivalent fault

set in order to reduce the number of target faults [7-9]. The D-

algorithm was proposed to tackle the test pattern generation

problem for combinational circuits [10-11]. In this algorithm,

a discrepancy signal D or D is propagated to an observable

point in the circuit. The decision points in this algorithm could

be the entire circuit. An alternative algorithm was proposed in

[12] where the decision points are only on the primary inputs.

This reduces the number of decision points from the number

of gates to the number of the primary inputs in the circuit.

Further enhancements were introduced in [13] where essential

signal values of internal nodes are determined which reduces

the number of backtracking an ATPG program makes. This

concept of essential signal assignment (unique implication)

was also used in [14-15] to reduce the number of backtracks.

In this paper we apply ordinary algebra to express the truth

value of a logic function. The algebraic expressions described

in this paper are based on switching variables that may take

the values 0, 1, or unspecified. The expressions contain

addition and subtraction operators from ordinary algebra. For

any internal node or output of a circuit we determine two

algebraic expressions. One expression enumerates all input

combinations for which the internal node or the output

assumes the logic value 1. The other expression enumerates

all input combinations for which the internal node or the

output assumes the logic value 0. Using these expressions in

conjunction with the Boolean difference equation, we are able

to determine the test set for any fault in the circuit. The

proposed algebraic method is complete because it either finds

a complete test set for a fault or otherwise proves the fault to

be untestable.

Topological description of a logic network is frequently

used in many types of VLSI CAD applications. Logic

simulation, fault simulation, timing analysis, and test pattern

generation are some examples of VLSI CAD applications

where the topological description of the circuit is used. The

algebraic method described in this paper operates on a

topological description of the circuit.

II. BINARY EXPRESSION

A combinational switching circuit C realizing a switching

function y of n variables assigns a value of 0 or 1 to a bit

A Method for Test Pattern Generation of

Combinational Circuits Using Ordinary Algebra

Zubair Ahmed

T

 International Journal of Computer and Information Technology (2279 – 0764)

Volume 01– Issue 01, September 2012

 www.ijcit.com 2

string of length n. Each bit string of length n is called an input

combination. The response of the switching circuit C is a

function only of the input combinations. Since there are n bit

positions and there exists two choices for each bit position

(i.e., 0 or 1), there are 2n such input combinations. We will

show that such input combinations that define a switching

function can often be expressed implicitly.

Definition 1: For any input variable or identifier the notation

x̂ means the value of x is 1. The notation x means the value

of x is 0. The notation x means that the value of the variable or

identifier is not specified. Therefore, x can be either a 0 or a 1.

The notation described in definition 1 allows us to specify a

set of input combinations of length n in an implicit way. For

example, consider a set of input variables or identifiers

x1,x2,…,xn. We can implicitly specify all possible input

combinations of length n in which the first identifier is a 0 and

the third identifier is a 1 by writing nxxxxx ,,,ˆ, 43,21  .

Since x1 is specified as 1x and x3 is specified as 3x̂ they must

be 0 and 1 respectively in each input combination. The

identifiers x2,x4,…,xn have two choices. That is, these

remaining identifiers can be either a 0 or a 1. Therefore, we

can write a product term nxxxx 321
ˆ that implicitly

enumerates 2n-2 input combinations in which the first identifier

is a 0 and the third identifier is a 1.

For every node in a circuit, whether that is a primary input,

an internal node, or a primary output, we define two sets: the

first set contains input combinations that set the node to a 1.

The other set contains input combinations that set the node to

a 0. A definition of these two sets is given below.

Definition 2: Let C be a switching circuit realizing a function y

of n variables x1,x2,…,xn. We define ŷ as a set and as an

expression that consists of all input combinations that set the

output node y to 1. The complement of ŷ is y such that y

is a set and an expression that contains all input combinations

that set the output node y to 0. Let ŷ and y denote the

number of input combinations that set y to 1 and 0

respectively.

Consider a 3-input primitive OR gate with inputs 21, xx

and 3x and output y . The only input combination that sets the

output to 0 is 321 xxx . Since this is the only input

combination for which 0y , it follows that

321 xxxy  and 1)1)(1)(1(y .

The product term 321 xxx is an implicit enumeration of 8

input combinations which is the total input space of the 3-

input OR gate. Therefore, if we subtract y from the total

input space we get the 7 input combinations for which the

output is a 1. Then it follows that

321321
ˆ xxxxxxy  and

7)1)(1)(1()2)(2)(2(ˆ y

For a 3-input primitive AND gate with inputs x1, x2, and x3

and output y, we can similarly write that

321
ˆˆˆˆ xxxy  , 1)1)(1)(1(ˆ y

321321
ˆˆˆ xxxxxxy  , 7)1)(1)(1()2)(2)(2(y

A product term is the AND operation of input variables or

identifiers. In a product term, zero or more identifiers are

unspecified. A product term is often an implicit enumeration

of a set of input combinations. An identifier that is not

specified in a product term can have two values (0 or 1). An

identifier that is specified in a product term can assume only

the specified value. A binary expression consists of product

term(s) where each product term appears in the expression

with an addition or a subtraction sign. For example, for the 3-

input primitive OR gate, 321 xxxy  is a binary expression.

Similarly, for the same gate, 321321
ˆ xxxxxxy  is a binary

expression. The name binary expression is based on the

observation that each variable or identifier in this expression

is either specified or not specified. If a variable or identifier is

specified then it is specified to be either 0 or 1. If a variable or

identifier is not specified then it is don’t care and its value for

the evaluation of the function does not matter.

If a product term contains n identifiers and each identifier in

the product term is unspecified, then the product term is an

implicit enumeration of 2n input combinations. Consider a

function y of n variables. Any subset of input combinations of

the function is called an input space of the function. The 2n

input combinations of the function is called the total input

space of the function. We use X to denote the total input space

of a function y.

The union (sum) and intersection (product) operations can

be defined for binary expressions ŷ and y for a function y of n

variables. Let X denote the total input space of the function y.

Since ŷ is a set of all input combinations that set y = 1 and

y is a set of all input combinations for which y = 0, it follows

that the union of these two sets is the total input space. That is,

Xyyy ˆ

In algebraic terms, the sum of the two expressions is an

expression that contains all input combinations (the total input

space). Therefore,

Xyyy ˆ

The intersection of the two sets must be empty because an

input combination that sets y to 1 cannot set y to 0 as well and

therefore, that input combination cannot be in both sets.

Therefore,

 International Journal of Computer and Information Technology (2279 – 0764)

Volume 01– Issue 01, September 2012

 www.ijcit.com 3

yyˆ

The product operation of the two expressions ŷ and y is 0.

This is because an input combination that sets y = 1 must

differ by at least one bit from an input combination that sets y

= 0. Therefore,

0ˆ  yy

III. ALGEBRAIC THEOREMS

We defined X as the total input space of a function, i.e., the

2n input combinations of a n-variable function. A single

variable function has a total input space of size two, namely 0

and 1. Thus a single variable function x can be expanded to

write as

xxx  ˆ (1)

Using (1) we can expand a product term into two product

terms for an identifier that is not specified. Also (1) can be

used to combine two product terms that differ only by one

identifier. That is, in one product term the identifier is

specified as x̂ and in the other product term the identifier is

specified as x .

We can specify the property of complementation [16]. A

variable or identifier cannot be set to opposite values

simultaneously and, therefore, such a proposition must be

false.

0ˆ xx (2)

The property of idempotency is specified below and it can

be proved by perfect induction [16].

xxx  (3)

If a variable or identifier is specified in one product term

and unspecified in another product term then multiplying

these two product terms gives a product term in which the

variable or the identifier is specified.

xxx

xxx



 ˆˆ
 (4)

Proof:

xxxxxxxxxx

xxxxxxxxxx





ˆ)ˆ(

ˆˆˆˆ)ˆ(ˆˆ

The addition and subtraction rules are from ordinary algebra

and are shown below.

0



xx

xxxx

Note that the sum rule for adding two variables is different

from the Boolean idempotency rule. If x is a Boolean variable,

then the idempotency rule states that summing the variable x

with itself yields the variable itself as shown below [16].

xxx 

On the other hand, in manipulating binary expressions, the

addition and subtraction of variables or product terms follow

the arithmetic rules.

The expansion rule has been described for a single variable.

Given a product term in a binary expression, the expansion

rule shows how to expand the product term into two product

terms. We can expand a product term such that in the

expanded form each product term represents a single input

combination. That will produce too many input combinations.

The alternative way to expand a product term is to expand one

identifier at a time to obtain a desired product term. Consider

the first form of expansion.

2121212121
ˆˆˆˆ xxxxxxxxxx 

The above form of expansion expands each variable in the

expression to obtain an expression in which each product term

represents a single input combination. An alternative form of

expansion is sometimes very helpful in the manipulation of

binary expressions. This form of expansion is shown below.

321321321321

321321321

321321321

ˆˆˆ

ˆˆ

ˆ

xxxxxxxxxxxx

xxxxxxxxx

xxxxxxxxx







The expansion procedure works as follows. In the first line,

the variable x1 is expanded using (1). In the second line, the

variable x2 is expanded using (1) for the second product term.

In the third line, the variable x3 is expanded using (1) for the

third product term. If a product term is expanded for n

variables then the above expansion procedure produces (n +

1) terms. For example, to reduce the binary expression

(321321
ˆ xxxxxx ) such that the negative term is eliminated

we perform the following steps.

321321321

321321

321321321321321

ˆˆˆ

ˆˆ

ˆˆˆˆ

xxxxxxxxx

xxxxxx

xxxxxxxxxxxxxxx







This form of expansion is far better because it yields fewer

terms. If we had to do a full expansion to eliminate the

negative term in the expression, we would end up with seven

terms in the expression. When all the negative terms of a

binary expression for a function y are eliminated, then the

expression is a union of zero or more product terms that

enumerate input combinations that set the function y to a 1 or

a 0.

For any node y in a circuit whether that be an internal node

or a primary output we determine both ŷ and y . These two

expressions are enumeration of input combinations that set y

to 1 and 0 respectively. Therefore, we determine input

combinations both for a function and its complement.

IV. ALGEBRAIC EQUATIONS FOR PRIMITIVE GATES

All gates of a combinational circuit must be evaluated in

order to determine the binary expressions associated with the

 International Journal of Computer and Information Technology (2279 – 0764)

Volume 01– Issue 01, September 2012

 www.ijcit.com 4

output nodes of these gates. Therefore, algebraic equations

must be established for the evaluation of all primitive gates.

For any gate G in the circuit following are the rules for the

evaluation of gate G.

(i) If G is a NOT gate with input y1 and output y2 then

12
ˆ yy  and 12

ŷy  .

(ii) If G is an AND gate with inputs kyyy ,,, 21  and

output yk+1 then k




 
k

j

jk yy
1

1
ˆˆ and 1211

ˆ


 kkk
yyyyy  .

(iii) If G is an OR gate with inputs kyyy ,,, 21  and

output yk+1 then







k

j
jk

yy
1

1
and

1211
ˆ

 
kkk yyyyy  .

(iv) If G is an XOR gate with inputs y1, y2 and output y3

then 21213
ˆˆ yyyyy  and

21213
ˆˆˆ yyyyy  .

For the AND(OR) gates in the above equations,

kyyy 21 denote the total input space of output node 1ky .

Therefore, this product term is the product of all input

variables (unspecified) that feed the output node yk+1.

We now discuss the algebraic equations for the primitive

gates. For a NOT gate, the input combinations that set the

input of the NOT gate to 0 also set the output to 1 and vice

versa. For an AND gate, the binary expressions kyyy ˆ,,ˆ,ˆ
21 

set the inputs to a logic 1 by definition. In determining the

output binary expression 1
ˆ

ky , we have to consider three

cases.

Case 1: A product term in the expression for 1
ˆ

ky is 0 if the

product term contains an identifier x both as x̂ and x (using

(2)).

Case 2: If an unspecified identifier x appears multiple times in

a product term of 1
ˆ

ky then it is reduced to one identifier x

(using (3)).

Case 3: If a product term of 1
ˆ

ky contains an identifier x both

in specified (xorx̂) form and unspecified (x) form then the

identifier becomes specified (using (4)).

The multiplication operation gives the input combinations

that set node yk+1 to 1 for an AND gate. Therefore, if 1
ˆ

ky is

the set of input combinations that set yk+1 to a 1, then

subtracting 1
ˆ

ky from the total input space of node yk+1 gives

the input combinations that set yk+1 to a 0. Similar argument

can be made about an OR gate. Note that the above argument

is for a gate of convergence where a reconvergent fanout node

converges. The equation for the XOR gate follows from its

Boolean equation.

V. USING THE BINARY EXPRESSION

The determination of binary expressions for circuit nodes is

illustrated in this section with an example (Fig. 1). The circuit

must be levelized first. Then binary expressions are

determined for level 1 gates, level 2 gates and so on using the

algebraic equations described in the previous section.

Figure 1: Example circuit for finding of binary expressions.

The level 1 gates y1 and y2 are evaluated first. The gate y1 is

an inverter. Therefore,

;ˆ

;ˆ

11

11

xy

xy





The gate y2 is an OR gate and its binary expressions are

given by

;ˆ

;

32322

322

xxxxy

xxy





Next we determine the binary expressions associated with

the outputs of level 2 gates y3 and y4.

41414144

41144

3213213213213

321321213

ˆˆ

;ˆˆˆˆ

ˆˆˆ

;ˆˆˆˆˆ

xxxxyyxy

xxyxy

xxxxxxxxxyyxy

xxxxxxyxy









The last gate in the example of Fig. 1 is a level 3 gate y5.

The binary expressions corresponding to the output of this

gate are determined as follows.

4321

432143214321

4141

321321321435

ˆ

ˆˆ

)ˆ(

)ˆˆ(

xxxx

xxxxxxxxxxxx

xxxx

xxxxxxxxxyyy







Next we proceed to determine the binary expression for

node y5 that sets y5 to logic 1.

x1

x2

x3

x4

y1

y2

y3

y4

y5

 International Journal of Computer and Information Technology (2279 – 0764)

Volume 01– Issue 01, September 2012

 www.ijcit.com 5

432143214321

43214321

432143214321

5435

ˆˆˆ

ˆˆ

ˆ

ˆ

xxxxxxxxxxxx

xxxxxxxx

xxxxxxxxxxxx

yyyy









The expression for
5

y readily gives all input combinations

that set node y5 to 0. The number of input combinations that

set y5 to 0 can be determined from the expression as follows.

6)2)(1)(1)(1(

)2)(2)(2)(1()1)(2)(2)(1()2)(2)(2)(2(
5



y

 The negative terms from the expression for
5

y can be

eliminated as follows.

43214321

4321

432143214321

43214321

4321432143215

ˆ

ˆ

ˆˆ

ˆˆ

ˆˆ

xxxxxxxx

xxxx

xxxxxxxxxxxx

xxxxxxxx

xxxxxxxxxxxxy











 In the above expansion, the product term x1x2x3x4 was first

expanded for the variable x1 using (1). Then the variable x4

was expanded using (1) again in the second line. Then it

follows that the output node y5 is 0 for the following input

combinations {x1x2x3x4 = 0XX0, 100X}.

 We now manipulate the binary expression that set node y5

to a 1. First, the number of input combinations that set the

output node to 1 is given by the following.

10

)2)(1)(1)(1()2)(2)(2)(1()1)(2)(2)(1(ˆ
5



y

We can eliminate the negative terms from the expression

for y5 that set y5 to 1.

432143214321

4321

432143214321

4321432143215

ˆˆˆˆˆ

ˆ

ˆˆˆˆ

ˆˆˆˆ

xxxxxxxxxxxx

xxxx

xxxxxxxxxxxx

xxxxxxxxxxxxy







Therefore, the input combinations that set y5 to 1 is

{x1x2x3x4 =11XX, 101X, 0XX1}.

VI. TEST PATTERN GENERATION METHODOLOGY

The objective of a test pattern generation algorithm for

combinational circuits is to determine a set of input patterns

such that when these patterns are applied at the inputs of a

circuit, the response of the circuit is incorrect in the presence

of a fault. A fault is an abstract model of a physical defect.

Thus a fault in an integrated circuit represents the

manifestation of a physical defect in the functional behavior

of the circuit. The most commonly used fault model is the

stuck-at fault. A stuck-at fault denotes the functionality of a

signal line in a circuit as either stuck-at 0 (s-a-0) or stuck-at 1

(s-a-1) in the presence of a physical defect. One important

assumption made by most test pattern generation algorithms is

that only a single line in the circuit is faulty whether it is a s-a-

0 fault or a s-a-1 fault. This is often known as the single stuck

fault (SSF) assumption. We assume a single stuck at fault

model in this paper.

We show the use of the Boolean difference method for

determining the test patterns for a combinational circuit. The

Boolean difference is a powerful method for determining test

patterns because it is guaranteed to find a test pattern for a

fault if there exists a test pattern for the fault [1-2]. Consider a

function y of input variables nxxx ,, 21 . The set of test

patterns that detect the fault jx s-a-0 is given by the equation

j

j
dx

dy
xT  (5)

and the set of test patterns that detect the fault jx s-a-1 is

given by the equation

j

j

dx

dy
xT  (6)

In the above equations,

jdx

dy
 is called the Boolean difference

of y with respect to jx and it is given by the expression

)0()1()0()1(

)0()1(





jjjj

jj

j

xyxyxyxy

xyxy
dx

dy

The binary expressions can be substituted in the Boolean

difference equation as follows. Consider a binary expression

ŷ for a function y. Let xj be an input variable of y. The

product operation yx j
ˆˆ gives all input combinations for which

y is a 1 and in each of these input combinations the variable xj

has a value of 1. Following the product operation, if we

remove the literal jx̂ from the expression yx j
ˆˆ then this

expression is equivalent to the switching expression y(xj = 1).

This is because y(xj = 1) denotes all input combinations for

which y is a 1 and in each of these input combinations the

value of xj is a 1. We denote this product operation by

 International Journal of Computer and Information Technology (2279 – 0764)

Volume 01– Issue 01, September 2012

 www.ijcit.com 6

)ˆ(ˆ
jxy .

That is, yxxy jj
ˆˆ)ˆ(ˆ  . The same definition applies for the

expressions)ˆ(),(ˆ
jj xyxy and)(jxy . Consider a 3-input

OR gate with y = x1 + x2 + x3. The binary expression

321 xxxy  represents the input combination for which y is

0. Similarly, 321321
ˆ xxxxxxy  represents the input

combinations for which y is 1. Then

3211

11

323211

3211

)(

0ˆ)ˆ(

ˆ)(ˆ

ˆˆ)ˆ(ˆ

xxyxxy

yxxy

xxxxyxxy

xxyxxy









The function)1(jxy denotes all input combinations for

which the function y is 1 and in each of these input

combinations the value of the variable xj is 1. Therefore,

)1(jxy is equivalent to the expression)ˆ(ˆ
jxy because the

binary expression denotes all input combinations for which

the function y is 1 and in each of those input combinations the

value of the variable xj is 1. Similarly, the function

)0(jxy denotes all input combinations for which the

function y is 0 and in each those input combinations the value

of the variable xj is 0. Therefore, this term is equivalent to the

expression)(jxy because this binary expression denotes all

input combinations for which the function y is 0 and in each

of those input combinations the value of the variable xj is 0.

Similar argument can be made about the equivalence of the

terms)1(jxy and)ˆ(jxy and the terms)0(jxy and

)(ˆ
jxy . Based on this discussion, the Boolean difference of a

function y with respect to the variable xj can be rewritten for

the binary expressions as,

)(ˆ)ˆ()()ˆ(ˆ

)0()1()0()1(

jjjj

jjjj

j

xyxyxyxy

xyxyxyxy
dx

dy





With the Boolean difference equation defined for binary

expressions, we can now determine the test sets for a fault jx

s-a-0 and s-a-1 by using equations (5) and (6) respectively.

The Boolean difference equation described above

determines test patterns for faults on primary inputs of a

circuit. The Boolean difference method can also be used to

determine test patterns for faults on the internal nodes of a

circuit. This is made possible using the chain rule [1].

Consider a function yi with input variables

nxxxX ,,, 21  . Let C be the circuit realization of this

function and yj be an internal node in C. Then the function

realized by node yj can be written in terms of the input

variables as yj(X). Moreover, the function yi(X) can be

expressed as a function of the internal node yj and the input

variables X as g(yj, X). Then we can determine the Boolean

difference of the function g(yj, X) with respect to yj. The

Boolean difference is given by

)1()0()1()0(

)1()0(
),(





jjjj

jj

j

j

ygygygyg

ygyg
dy

Xydg

In order to use the binary expressions in determining test

vectors for an internal node, the binary expression must also

be derived based on the identifier of the internal node.

Therefore, the binary expressions for the output node must be

expressed in terms of yj and X. With this modification of the

binary expressions, we write the Boolean difference

expression in terms of the binary expressions as

)ˆ(ˆ)()ˆ()(ˆ
jijijiji

j

i yyyyyyyy
dy

dy


Then the set of test vectors that detect the fault yj s-a-0 is

given by

j

i

j
dy

dy
yT ˆ

The set of test vectors that detect the fault yj s-a-1 is given by

j

i

j dy

dy
yT 

We illustrate the use of the chain rule with the circuit of Fig.

2. Consider deriving tests for stuck-at faults on node y2 using

the chain rule. In order to use the chain rule, the binary

expression must be derived using the identifier for node y2.

Figure 2: Example circuit for test pattern generation.

The binary expressions for node y8 as a function of node y2 are

given below.

x1

x2

x3

x

4

y1

y2

y3

y4

y5

y6

y7

y8

 International Journal of Computer and Information Technology (2279 – 0764)

Volume 01– Issue 01, September 2012

 www.ijcit.com 7

2432124321

2432124321243218

24321

2432124321243218

ˆˆˆˆ

ˆˆˆˆˆˆ

ˆ

ˆˆˆˆˆˆˆˆˆˆ

yxxxxyxxxx

yxxxxyxxxxyxxxxy

yxxxx

yxxxxyxxxxyxxxxy









The Boolean difference of output node y8 with respect to node

y2 is given by

)ˆ(ˆ)()ˆ()(ˆ
28282828

2

8 yyyyyyyy
dy

dy


Each of the terms in the Boolean expression is given below.

43214321

8228

43214321

8228

432143214321

8228

4321

8228

ˆˆ

ˆˆ)ˆ(ˆ

ˆˆˆˆ

)(

ˆˆ

ˆ)ˆ(

ˆˆˆˆ

ˆ)(ˆ

xxxxxxxx

yyyy

xxxxxxxx

yyyy

xxxxxxxxxxxx

yyyy

xxxx

yyyy

















The difference equation evaluates to the following expression.

432143214321

2

8 ˆˆˆˆˆ xxxxxxxxxxxx
dy

dy


The set of test vectors to detect the fault y2 s-a-0 is given by

the following expression.

4321

2

8

2
ˆ xxxx

dy

dy
yT 

The binary pattern to detect the fault y2 s-a-0 is {x1x2x3x4 =

0000}. The set of test vectors that detect the fault y2 s-a-1 is

given by the following expression.

43214321

2

8

2
ˆˆˆˆˆ xxxxxxxx

dy

dy
yT 

The binary patterns for this fault are {x1x2x3x4 = 0111, X110}.

 The second product term in the expression 8ŷ makes

inconsistent assignment because y2 is 0 when x2 or x3 is a 1.

When we determine the binary expression for the output node

y8, y2 is treated as an independent variable. Moreover, x2 and

x3 are reconvergent fanout nodes that converge at node y8. If

we substitute 322
ˆ xxy  then this product term becomes 0

and therefore, does not cause any problem in the

determination of the input combinations that set the output

node to a 1.

VII. CONCLUSION

This paper presented an algebraic method for determining

test set for a fault in a combinational circuit. A binary

expression has been developed that incorporates rules from

ordinary algebra. The binary expressions are based on logic

variables.

The binary expression for a function is not unique. There is

not a one-to-one correspondence or unique relationship

between a function and its binary expression. A function may

be represented by more than one binary expression that are

different literal wise. However, the primary input

combinations represented by the two different binary

expressions of a function must of course be the same.

In a Boolean expression, two product terms may contain

common primary input combinations. In other words, the

input spaces denoted by two product terms in a Boolean

expression may overlap. In a binary expression, however, two

product terms denote input spaces that are disjoint; there is no

overlap.

REFERENCES

[1] M. A. Breuer and A. D. Friedman, “Diagnosis & Reliable Design of

Digital Systems”, Maryland: Computer Science Press, 1976, ch. 2.

[2] L-T Wang, C-W Wu, X. Wen, “VLSI Test Principles and Architectures:

Design for Testability”, California: Morgan Kufmann Publishers, 2006,

ch. 4.

[3] J. F. Poage, “Derivation of Optimum Tests to Detect Faults in

Combinational Circuits”, Proc. Symposium on Mathematical Theory of

Automata, Polytechnic Institute of Brooklyn, pp. 483-528, 1963.

[4] D. B. Armstrong, “On Finding a Nearly Minimal Set of Fault Detection

Tests for Combinational Logic Nets”, IEEE Transactions on Electronic

Computers, Vol. EC-15, pp. 66-73, February 1966.

[5] D. C. Bossen and S. J. Hong, “Cause-Effect Analysis for Multiple Fault

Detection in Combinational Networks”, IEEE Transactions on

Computers, vol. C-20, pp. 1252-1257, November 1971.

[6] F. W. Clegg, “Use of SPOOF’s in the Analysis of Faulty Logic

Networks, IEEE Transactions on Computers, vol. C-22, pp. 229-234,

March 1973.

[7] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems

Testing and Testable Design”, IEEE Press, Piscataway, NJ, 1994.

[8] M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for

Digital, Memory, and Mixed-Signal VLSI Circuits”, Springer, New

York, 2000.

[9] N. Jha and S. Gupta, “Testing of Digital Systems”, Cambridge

University Press, Cambridge, U. K. , 2003.

[10] J. P. Roth, “Diagnosis of Automata Failures: A Calculus and A

Method”, IBM J R&D, 10(4), pp. 278-291, 1966.

[11] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed

Algorithms to Compute Tests To Detect and Distinguish between

Failures in Logic Circuits”, IEEE Trans. Electron. Computer, EC-16(10),

pp. 567-579, 1967.

[12] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for

Combinational Logic Circuits”, IEEE Transactions on Computers, C-

30(3), pp. 215-222, 1981.

[13] H. Fujiwara and T. Shimono, “On the Acceleration of Test Generation

Algorithms”, IEEE Transactions on Computers, C-32(12), pp. 1137-

1144, 1983.

 International Journal of Computer and Information Technology (2279 – 0764)

Volume 01– Issue 01, September 2012

 www.ijcit.com 8

[14] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly

Efficient Automatic Test Pattern Generation System”, IEEE Transaction

on Computer-Aided Design, 8(7), pp. 126-137, 1988.

[15] M. H. Schulz and E. Auth, “Improved Deterministic Test Pattern

Generation with Applications to Redundancy Identification”, IEEE

Transactions on Computer-Aided Design, 8(7), pp. 811-816, 1989.

[16] Z. Kohavi, “Switching and Finite Automata Theory”, New York:

McGraw-Hill Book Company, 2nd Edition, 1978, ch. 3.

Z. Ahmed – Dr. Ahmed received his B.S.E in Electrical Engineering from The University of Iowa, USA in 1985, and M.E. and Ph.D. in Electrical Engineering

from Rensselaer Polytechnic Institute, USA in 1989 and 1991 respectively. After completion of his doctoral studies, he served as an Advisory Engineer &

Scientist at IBM Corporation for over five years. Subsequently, he served in a senior engineering capacity at several high-tech companies in the western part of

USA including as a Senior Engineer with Fujitsu Microelectronics Corporation. He has accumulated over a decade of experience in the high-tech industry in the

specialized fields of microprocessor design and test, electronic design automation (computer-aided design), and microelectronics circuit design. His research

interest is in the area of VLSI testability. He can be contacted at his email address zahmed1212@yahoo.com.

mailto:zahmed1212@yahoo.com

